Lack of CCR7 induces pulmonary hypertension involving perivascular leukocyte infiltration and inflammation

2011 ◽  
Vol 301 (1) ◽  
pp. L50-L59 ◽  
Author(s):  
Karl-Otto Larsen ◽  
Arne Yndestad ◽  
Ivar Sjaastad ◽  
Else Marit Løberg ◽  
Ingeborg Løstegaard Goverud ◽  
...  

The chemokine receptor CCR7 regulates lymphocyte trafficking, and CCR7 deficiency induces infiltration of T and B cells adjacent to vessels in mouse lungs. Perivascular infiltration of T and B cells has also been found in human pulmonary arterial hypertension, and downregulation of the CCR7 receptor in circulating leukocytes of such patients has been observed. To investigate whether changes in the CCR7 system contribute to the pathogenesis of pulmonary hypertension, we utilized mice deficient of the CCR7 receptor. The cardiopulmonary and inflammatory responses of CCR7 depletion were evaluated in CCR7-deficient and wild-type mice. Measurements of cytokines upregulated in the animal model were also performed in patients with pulmonary hypertension and controls and in vascular smooth muscle cells. We found that mice lacking CCR7 had increased right ventricular systolic pressure, reduced pulmonary artery acceleration time, increased right ventricular/tibial length ratio, Rho kinase-mediated pulmonary vasoconstriction, and increased muscularization of distal arteries, indicating pulmonary hypertension. These mice also showed increased perivascular infiltration of leukocytes, consisting mainly of T and B cells, and increased mRNA levels of the inflammatory cytokines interleukin-12 and CX3CL1 within pulmonary tissue. Increased serum levels of interleukin-12 and CX3CL1 were also observed in patients with pulmonary hypertension, particularly in those with pulmonary hypertension associated with connective tissue disorder. In smooth muscle cells, interleukin-12 induced secretion of the angiogenic cytokine interleukin-8. We conclude that these results suggest a role for CCR7 in the development of pulmonary arterial hypertension, at least in some subgroups, possibly via pulmonary infiltration of lymphocytes and secretion of interleukin-12 and CX3CL1.

Rheumatology ◽  
2019 ◽  
Author(s):  
Nobuya Abe ◽  
Masaru Kato ◽  
Michihito Kono ◽  
Yuichiro Fujieda ◽  
Hiroshi Ohira ◽  
...  

Abstract Objectives Pulmonary hypertension (PH) in patients with CTD is a heterogeneous condition affected by left heart disease, chronic lung disease and thromboembolism as well as pulmonary vascular disease. Recent studies using cardiac magnetic resonance (CMR) have shown that right ventricular dysfunction is predictive for mortality in patients with PH, but limited to pulmonary arterial hypertension. This study aimed to analyse prognostic factors in PH-CTD. Methods This retrospective analysis comprised 84 CTD patients, including SSc, who underwent both CMR and right heart catheterization from 2008 to 2018. Demographics, laboratory findings, and haemodynamic and morphological parameters were extracted. The prognostic value of each parameter was evaluated by multivariate analysis using covariables derived from propensity score to control confounding factors. Results Of 84 patients, 65 had right heart catheterization-confirmed PH (54 pulmonary arterial hypertension, 11 non-pulmonary arterial hypertension). Nine out of these PH patients died during a median follow-up period of 25 months. In 65 patients with PH, right ventricular end-diastolic dimension index (RVEDDI) evaluated by CMR was independently associated with mortality (hazard ratio 1.24; 95% CI: 1.08–1.46; P = 0.003). In a receiver operating characteristic analysis, RVEDDI highly predicted mortality, with area under the curve of 0.87. The 0.5–2-year follow-up data revealed that RVEDDI in both survivors and non-survivors did not significantly change over the clinical course, leading to the possibility that an early determination of RVEDDI could predict the prognosis. Conclusion RVEDDI simply evaluated by CMR could serve as a significant predictor of mortality in PH-CTD. A further validation cohort study is needed to confirm its usability.


2019 ◽  
Vol 125 (10) ◽  
pp. 884-906 ◽  
Author(s):  
Junichi Omura ◽  
Kimio Satoh ◽  
Nobuhiro Kikuchi ◽  
Taijyu Satoh ◽  
Ryo Kurosawa ◽  
...  

Rationale: Pulmonary arterial hypertension (PAH) is characterized by pulmonary vascular remodeling with aberrant pulmonary artery smooth muscle cells (PASMCs) proliferation, endothelial dysfunction, and extracellular matrix remodeling. Objective: Right ventricular (RV) failure is an important prognostic factor in PAH. Thus, we need to elucidate a novel therapeutic target in both PAH and RV failure. Methods and Results: We performed microarray analysis in PASMCs from patients with PAH (PAH-PASMCs) and controls. We found a ADAMTS8 (disintegrin and metalloproteinase with thrombospondin motifs 8), a secreted protein specifically expressed in the lung and the heart, was upregulated in PAH-PASMCs and the lung in hypoxia-induced pulmonary hypertension (PH) in mice. To elucidate the role of ADAMTS8 in PH, we used vascular smooth muscle cell-specific ADAMTS8-knockout mice (ADAMTS ΔSM22 ). Hypoxia-induced PH was attenuated in ADAMTS ΔSM22 mice compared with controls. ADAMTS8 overexpression increased PASMC proliferation with downregulation of AMPK (AMP-activated protein kinase). In contrast, deletion of ADAMTS8 reduced PASMC proliferation with AMPK upregulation. Moreover, deletion of ADAMTS8 reduced mitochondrial fragmentation under hypoxia in vivo and in vitro. Indeed, PASMCs harvested from ADAMTS ΔSM22 mice demonstrated that phosphorylated DRP-1 (dynamin-related protein 1) at Ser637 was significantly upregulated with higher expression of profusion genes (Mfn1 and Mfn2) and improved mitochondrial function. Moreover, recombinant ADAMTS8 induced endothelial dysfunction and matrix metalloproteinase activation in an autocrine/paracrine manner. Next, to elucidate the role of ADAMTS8 in RV function, we developed a cardiomyocyte-specific ADAMTS8 knockout mice (ADAMTS8 ΔαMHC ). ADAMTS8 ΔαMHC mice showed ameliorated RV failure in response to chronic hypoxia. In addition, ADAMTS8 ΔαMHC mice showed enhanced angiogenesis and reduced RV ischemia and fibrosis. Finally, high-throughput screening revealed that mebendazole, which is used for treatment of parasite infections, reduced ADAMTS8 expression and cell proliferation in PAH-PASMCs and ameliorated PH and RV failure in PH rodent models. Conclusions: These results indicate that ADAMTS8 is a novel therapeutic target in PAH.


Hypertension ◽  
2020 ◽  
Vol 76 (4) ◽  
pp. 1134-1146 ◽  
Author(s):  
Gema Mondéjar-Parreño ◽  
Bianca Barreira ◽  
María Callejo ◽  
Daniel Morales-Cano ◽  
Vincenzo Barrese ◽  
...  

K + channels play a fundamental role regulating membrane potential of pulmonary artery (PA) smooth muscle cells and their impairment is a common feature in pulmonary arterial hypertension (PAH). K + voltage-gated channel subfamily Q ( KCNQ1-5 ) or Kv7 channels and their regulatory subunits subfamily E (KCNE) regulatory subunits are known to regulate vascular tone, but whether Kv7 channel function is impaired in PAH and how this can affect the rationale for targeting Kv7 channels in PAH remains unknown. Here, we have studied the role of Kv7/KCNE subunits in rat PA and their possible alteration in PAH. Using the patch-clamp technique, we found that the total K + current is reduced in PA smooth muscle cells from pulmonary hypertension animals (SU5416 plus hypoxia) and Kv7 currents made a higher contribution to the net K + current. Likewise, enhanced vascular responses to Kv7 channel modulators were found in pulmonary hypertension rats. Accordingly, KCNE4 subunit was highly upregulated in lungs from pulmonary hypertension animals and patients. Additionally, Kv7 channel activity was enhanced in the presence of Kv1.5 and TASK-1 channel inhibitors and this was associated with an increased KCNE4 membrane abundance. Compared with systemic arteries, PA showed a poor response to Kv7 channel modulators which was associated with reduced expression and membrane abundance of Kv7.4 and KCNE4. Our data indicate that Kv7 channel function is preserved and KCNE4 is upregulated in PAH. Therefore, compared with other downregulated channels, the contribution of Kv7 channels is increased in PAH resulting in an enhanced sensitivity to Kv7 channel modulators. This study provides insight into the potential usefulness of targeting Kv7 channels in PAH.


Hypertension ◽  
2021 ◽  
Vol 77 (1) ◽  
pp. 59-71
Author(s):  
Yongfa Huang ◽  
Chuxiang Lei ◽  
Wenjun Xie ◽  
Li Yan ◽  
Yanru Wang ◽  
...  

Right ventricular (RV) failure is a major cause of death in patients with pulmonary arterial hypertension, and the mechanism of RV failure remains unclear. While the malfunction of RyR2 (ryanodine receptor type 2) on sarcoplasmic reticulum (SR) and aberrant Ca 2+ cycling in cardiomyocytes have been recognized in some cardiovascular diseases, their roles in RV failure secondary to pulmonary arterial hypertension require further investigation. In a monocrotaline-induced rat model of pulmonary arterial hypertension, the RV remodeling process was divided into normal, compensated, and decompensated stages according to the hemodynamic and morphological parameters. In both compensated and decompensated stages, significant diastolic SR Ca 2+ leakage was detected along with reduced intracellular Ca 2+ transient amplitude and SR Ca 2+ contents in RV myocytes. RyR2 protein levels decreased progressively during the process, and the thiol oxidation proportions of RyR2 were higher in compensated and decompensated stages than in normal stage. Inhibition of RyR2 oxidation by dithiothreitol or repairing RyR2 directly by dantrolene could restore Ca 2+ homeostasis in RV myocytes. Daily intraperitoneal injection of dantrolene delayed decompensation progression and significantly improved the survival rate of pulmonary hypertension rats in decompensated stage (79.3% versus 55.9%; P =0.026). Our findings suggest that diastolic SR Ca 2+ leakage via oxidized RyR2 facilitates the development of RV failure. Dantrolene can inhibit diastolic SR Ca 2+ leakage in RV cardiomyocytes, delay right cardiac dysfunction, and improve the survival of rats with pulmonary arterial hypertension.


2021 ◽  
Vol 41 (3) ◽  
pp. 1205-1217 ◽  
Author(s):  
Ryo Kurosawa ◽  
Kimio Satoh ◽  
Takashi Nakata ◽  
Tomohiko Shindo ◽  
Nobuhiro Kikuchi ◽  
...  

Objective: Pulmonary arterial hypertension is characterized by abnormal proliferation of pulmonary artery smooth muscle cells and vascular remodeling, which leads to right ventricular (RV) failure. Bsg (Basigin) is a transmembrane glycoprotein that promotes myofibroblast differentiation, cell proliferation, and matrix metalloproteinase activation. CyPA (cyclophilin A) binds to its receptor Bsg and promotes pulmonary artery smooth muscle cell proliferation and inflammatory cell recruitment. We previously reported that Bsg promotes cardiac fibrosis and failure in the left ventricle in response to pressure-overload in mice. However, the roles of Bsg and CyPA in RV failure remain to be elucidated. Approach and Results: First, we found that protein levels of Bsg and CyPA were upregulated in the heart of hypoxia-induced pulmonary hypertension (PH) in mice and monocrotaline-induced PH in rats. Furthermore, cardiomyocyte-specific Bsg-overexpressing mice showed exacerbated RV hypertrophy, fibrosis, and dysfunction compared with their littermates under chronic hypoxia and pulmonary artery banding. Treatment with celastrol, which we identified as a suppressor of Bsg and CyPA by drug screening, decreased proliferation, reactive oxygen species, and inflammatory cytokines in pulmonary artery smooth muscle cells. Furthermore, celastrol treatment ameliorated RV systolic pressure, hypertrophy, fibrosis, and dysfunction in hypoxia-induced PH in mice and SU5416/hypoxia-induced PH in rats with reduced Bsg, CyPA, and inflammatory cytokines in the hearts and lungs. Conclusions: These results indicate that elevated Bsg in pressure-overloaded RV exacerbates RV dysfunction and that celastrol ameliorates RV dysfunction in PH model animals by suppressing Bsg and its ligand CyPA. Thus, celastrol can be a novel drug for PH and RV failure that targets Bsg and CyPA. Graphic Abstract: A graphic abstract is available for this article.


2020 ◽  
Vol 10 (2) ◽  
pp. 204589402092281 ◽  
Author(s):  
Kathryn S. Wilson ◽  
Hanna Buist ◽  
Kornelija Suveizdyte ◽  
John T. Liles ◽  
Grant R. Budas ◽  
...  

Pulmonary arterial hypertension, group 1 of the pulmonary hypertension disease family, involves pulmonary vascular remodelling, right ventricular dysfunction and cardiac failure. Oxidative stress, through activation of mitogen-activated protein kinases is implicated in these changes. Inhibition of apoptosis signal-regulating kinase 1, an apical mitogen-activated protein kinase, prevented pulmonary arterial hypertension developing in rodent models. Here, we investigate apoptosis signal-regulating kinase 1 in pulmonary arterial hypertension by examining the impact that its inhibition has on the molecular and cellular signalling in established disease. Apoptosis signal-regulating kinase 1 inhibition was investigated in in vivo pulmonary arterial hypertension and in vitro pulmonary hypertension models. In the in vivo model, male Sprague Dawley rats received a single subcutaneous injection of Sugen SU5416 (20 mg/kg) prior to two weeks of hypobaric hypoxia (380 mmHg) followed by three weeks normoxia (Sugen/hypoxic), then animals were either maintained for three weeks on control chow or one containing apoptosis signal-regulating kinase 1 inhibitor (100 mg/kg/day). Cardiovascular measurements were carried out. In the in vitro model, primary cultures of rat pulmonary artery fibroblasts and rat pulmonary artery smooth muscle cells were maintained in hypoxia (5% O2) and investigated for proliferation, migration and molecular signalling in the presence or absence of apoptosis signal-regulating kinase 1 inhibitor. Sugen/hypoxic animals displayed significant pulmonary arterial hypertension compared to normoxic controls at eight weeks. Apoptosis signal-regulating kinase 1 inhibitor decreased right ventricular systolic pressure to control levels and reduced muscularised vessels in lung tissue. Apoptosis signal-regulating kinase 1 inhibition was found to prevent hypoxia-induced proliferation, migration and cytokine release in rat pulmonary artery fibroblasts and also prevented rat pulmonary artery fibroblast-induced rat pulmonary artery smooth muscle cell migration and proliferation. Apoptosis signal-regulating kinase 1 inhibition reversed pulmonary arterial hypertension in the Sugen/hypoxic rat model. These effects may be a result of intrinsic changes in the signalling of adventitial fibroblast.


Sign in / Sign up

Export Citation Format

Share Document