C-type natriuretic peptide attenuates bleomycin-induced pulmonary fibrosis in mice

2004 ◽  
Vol 287 (6) ◽  
pp. L1172-L1177 ◽  
Author(s):  
Shinsuke Murakami ◽  
Noritoshi Nagaya ◽  
Takefumi Itoh ◽  
Takafumi Fujii ◽  
Takashi Iwase ◽  
...  

C-type natriuretic peptide (CNP) has been shown to play an important role in the regulation of vascular tone and remodeling. However, the physiological role of CNP in the lung remains unknown. Accordingly, we investigated whether CNP infusion attenuates bleomycin (BLM)-induced pulmonary fibrosis in mice. After intratracheal injection of BLM or saline, mice were randomized to receive continuous infusion of CNP or vehicle for 14 days. CNP infusion significantly reduced the total number of cells and the numbers of macrophages, neutrophils, and lymphocytes in bronchoalveolar lavage fluid. Interestingly, CNP markedly reduced bronchoalveolar lavage fluid IL-1β levels. Immunohistochemical analysis demonstrated that CNP significantly inhibited infiltration of macrophages into the alveolar and interstitial regions. CNP infusion significantly attenuated BLM-induced pulmonary fibrosis, as indicated by significant decreases in Ashcroft score and lung hydroxyproline content. CNP markedly decreased the number of Ki-67-positive cells in fibrotic lesions of the lung, suggesting antiproliferative effects of CNP on pulmonary fibrosis. Kaplan-Meier survival curves demonstrated that BLM mice treated with CNP had a significantly higher survival rate than those given vehicle. These results suggest that continuous infusion of CNP attenuates BLM-induced pulmonary fibrosis and improves survival in BLM mice, at least in part by inhibition of pulmonary inflammation and cell proliferation.

Respirology ◽  
2012 ◽  
Vol 17 (5) ◽  
pp. 814-820 ◽  
Author(s):  
SADATOMO TASAKA ◽  
KOSUKE MIZOGUCHI ◽  
YOHEI FUNATSU ◽  
HO NAMKOONG ◽  
WAKAKO YAMASAWA ◽  
...  

2019 ◽  
Vol 20 (20) ◽  
pp. 4989 ◽  
Author(s):  
Yoshinori Tanino ◽  
Xintao Wang ◽  
Takefumi Nikaido ◽  
Kenichi Misa ◽  
Yuki Sato ◽  
...  

Syndecan-4 is a transmembrane heparan sulfate proteoglycan expressed in a variety of cells, and its heparan sulfate glycosaminoglycan side chains bind to several proteins exhibiting various biological roles. The authors have previously demonstrated syndecan-4′s critical roles in pulmonary inflammation. In the current study, however, its role in pulmonary fibrosis was evaluated. Wild-type and syndecan-4-deficient mice were injected with bleomycin, and several parameters of inflammation and fibrosis were analyzed. The mRNA expression of collagen and α-smooth muscle action (α-SMA) in lung tissues, as well as the histopathological lung fibrosis score and collagen content in lung tissues, were significantly higher in the syndecan-4-deficient mice. However, the total cell count and cell differentiation in bronchoalveolar lavage fluid were equivalent between the wild-type and syndecan-4-deficient mice. Although there was no difference in the TGF-β expression in lung tissues between the wild-type and syndecan-4-deficient mice, significantly more activation of Smad3 in lung tissues was observed in the syndecan-4-deficient mice compared to the wild-type mice. Furthermore, in the in vitro experiments using lung fibroblasts, the co-incubation of syndecan-4 significantly inhibited TGF-β-induced Smad3 activation, collagen and α-SMA upregulation. Moreover, syndecan-4 knock-down by siRNA increased TGF-β-induced Smad3 activation and upregulated collagen and α-SMA expression. These findings showed that syndecan-4 inhibits the development of pulmonary fibrosis, at least in part, through attenuating TGF-β signaling.


2009 ◽  
Vol 296 (4) ◽  
pp. L614-L623 ◽  
Author(s):  
Masaru Suzuki ◽  
Tomoko Betsuyaku ◽  
Yoko Ito ◽  
Katsura Nagai ◽  
Nao Odajima ◽  
...  

Curcumin, a yellow pigment obtained from turmeric ( Curcumina longa), is a dietary polyphenol that has been reported to possess anti-inflammatory and antioxidant properties. The effect of curcumin against the development of pulmonary emphysema in animal models is unknown. The aim of this study was to determine whether curcumin is able to attenuate the development of pulmonary emphysema in mice. Nine-week-old male C57BL/6J mice were treated with intratracheal porcine pancreatic elastase (PPE) or exposed to mainstream cigarette smoke (CS) (60 min/day for 10 consecutive days or 5 days/wk for 12 wk) to induce pulmonary inflammation and emphysema. Curcumin (100 mg/kg) or vehicle was administrated daily by oral gavage 1 h and 24 h before intratracheal PPE treatment and daily thereafter throughout a 21-day period in PPE-exposed mice and 1 h before each CS exposure in CS-exposed mice. As a result, curcumin treatment significantly inhibited PPE-induced increase of neutrophils in bronchoalveolar lavage fluid at 6 h and on day 1 after PPE administration, with an increase in antioxidant gene expression at 6 h and significantly attenuated PPE-induced air space enlargement on day 21. It was also found that curcumin treatment significantly inhibited CS-induced increase of neutrophils and macrophages in bronchoalveolar lavage fluid after 10 consecutive days of CS exposure and significantly attenuated CS-induced air space enlargement after 12 wk of CS exposure. In conclusion, oral curcumin administration attenuated PPE- and CS-induced pulmonary inflammation and emphysema in mice.


1998 ◽  
Vol 42 (12) ◽  
pp. 3309-3312 ◽  
Author(s):  
Michel Duong ◽  
Marie Simard ◽  
Yves Bergeron ◽  
Nathalie Ouellet ◽  
Mélanie Côté-Richer ◽  
...  

ABSTRACT We investigated the influence of HMR 3004, a new ketolide antibiotic, on the pulmonary inflammation induced by heat-killed fluorescein isothiocyanate-labeled Streptococcus pneumoniae. HMR 3004 downregulated (P < 0.05) the pneumococcus-induced release of interleukin-6 (IL-6), IL-1β, and nitric oxide in bronchoalveolar lavage fluid. The drug limited (P < 0.05) neutrophil recruitment to lung tissues and alveoli but did not interfere with phagocytosis. HMR 3004 totally abrogated lung edema. By reducing inflammation in addition to possessing antimicrobial properties, HMR 3004 may participate in improving the outcome of bacterial pneumonia.


Sign in / Sign up

Export Citation Format

Share Document