Regulation of constitutive neutrophil apoptosis by the α,β-unsaturated aldehydes acrolein and 4-hydroxynonenal

2005 ◽  
Vol 289 (6) ◽  
pp. L1019-L1028 ◽  
Author(s):  
Erik I. Finkelstein ◽  
Jurjen Ruben ◽  
C. Wendy Koot ◽  
Milena Hristova ◽  
Albert van der Vliet

Reactive α,β-unsaturated aldehydes are major components of common environmental pollutants and are products of lipid oxidation. Although these aldehydes have been demonstrated to induce apoptotic cell death in various cell types, we recently observed that the α,β-unsaturated aldehyde acrolein (ACR) can inhibit constitutive apoptosis of polymorphonuclear neutrophils and thus potentially contribute to chronic inflammation. The present study was designed to investigate the biochemical mechanisms by which two representative α,β-unsaturated aldehydes, ACR and 4-hydroxynonenal (HNE), regulate neutrophil apoptosis. Whereas low concentrations of either aldehyde (<10 μM) mildly promoted apoptosis in neutrophils (reflected by increased phosphatidylserine exposure, caspase-3 activation, and mitochondrial cytochrome c release), higher concentrations prevented critical features of apoptosis (caspase-3 activation, phosphatidylserine exposure) and caused delayed neutrophil cell death with characteristics of necrosis/oncosis. Inhibition of caspase-3 activation by either aldehyde occurred despite increases in mitochondrial cytochrome c release and occurred in close association with depletion of cellular GSH and with cysteine modifications within caspase-3. However, procaspase-3 processing was also prevented, because of inhibited activation of caspases-9 and -8 under similar conditions, suggesting that ACR (and to a lesser extent HNE) can inhibit both intrinsic (mitochondria dependent) and extrinsic mechanisms of neutrophil apoptosis at initial stages. Collectively, our results indicate that α,β-unsaturated aldehydes can inhibit constitutive neutrophil apoptosis by common mechanisms, involving changes in cellular GSH status resulting in reduced activation of initiator caspases as well as inactivation of caspase-3 by modification of its critical cysteine residue.

2010 ◽  
Vol 38 (02) ◽  
pp. 373-386 ◽  
Author(s):  
Qin Hu ◽  
Ruile Pan ◽  
Liwei Wang ◽  
Bo Peng ◽  
Jingtian Tang ◽  
...  

Platycodon grandiflorum (Jacq.) A. DC., a Chinese food and medicine, has been used as expectorant traditionally. The present study aimed to investigate the effect of Platycodon grandiflorum extract (PGE) on SKOV3 ovarian cancer cells. 3-(4,5- dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) assay was used to monitor cell numbers, Annexin-V/propidium iodide (PI) staining, RT-PCR and Western blot were used to examine cell apoptosis, caspases activation. Bcl-2 and Bax expressions and mitochondrial cytochrome c release. Our result showed that PGE-induced apoptosis was associated with activation of caspase-3, -8 and -9, down-regulation of Bcl-2, up-regulation of Bax and release of mitochondrial cytochrome c to cytosol. The data indicate that PGE may have anti-tumor effect mainly via caspase-3 and caspase-9 dependent apoptotic pathway.


2004 ◽  
Vol 24 (23) ◽  
pp. 10289-10299 ◽  
Author(s):  
Paula B. Deming ◽  
Zachary T. Schafer ◽  
Jessica S. Tashker ◽  
Malia B. Potts ◽  
Mohanish Deshmukh ◽  
...  

ABSTRACT Bcr-Abl, activated in chronic myelogenous leukemias, is a potent cell death inhibitor. Previous reports have shown that Bcr-Abl prevents apoptosis through inhibition of mitochondrial cytochrome c release. We report here that Bcr-Abl also inhibits caspase activation after the release of cytochrome c. Bcr-Abl inhibited caspase activation by cytochrome c added to cell-free lysates and prevented apoptosis when cytochrome c was microinjected into intact cells. Bcr-Abl acted posttranslationally to prevent the cytochrome c-induced binding of Apaf-1 to procaspase 9. Although Bcr-Abl prevented interaction of endogenous Apaf-1 with the recombinant prodomain of caspase 9, it did not affect the association of endogenous caspase 9 with the isolated Apaf-1 caspase recruitment domain (CARD) or Apaf-1 lacking WD-40 repeats. These data suggest that Apaf-1 recruitment of caspase 9 is faulty in the presence of Bcr-Abl and that cytochrome c/dATP-induced exposure of the Apaf-1 CARD is likely defective. These data provide a novel locus of Bcr-Abl antiapoptotic action and suggest a distinct mechanism of apoptosomal inhibition.


2021 ◽  
Vol 43 (2) ◽  
pp. 1114-1132
Author(s):  
Amal A. Alotaibi ◽  
Asmatanzeem Bepari ◽  
Rasha Assad Assiri ◽  
Shaik Kalimulla Niazi ◽  
Sreenivasa Nayaka ◽  
...  

Background and Objectives: Saussurea lappa (S. lappa) is an important species of the Asteraceae family with several purposes in traditional medicine. This study intended to explore the cytotoxic effect of S. lappa on HepG2 cancer cell proliferation. Materials and Methods: The effects of an S. lappa n-butanol extract on the induction of apoptosis were investigated by flow cytometry and mitochondrial cytochrome C-releasing apoptosis assay. Additionally, real-time PCR was employed to confirm apoptosis initiation. Further, qualitative estimation of the active constituent of S. lappa was done by gas chromatography–mass spectroscopy (GC–MS). Results: The cell viability study revealed that the n-butanol extract of S. lappa demonstrated potent cytotoxicity against HepG2 cancer cells, with an IC50 value of 56.76 μg/mL. Cell morphology with dual staining of acridine orange (AO)-ethidium bromide (EB) showed an increase in orange/red nuclei due to cell death by S. lappa n-butanol extract compared to control cells. Apoptosis, as the mode of cell death, was also confirmed by the higher release of cytochrome C from mitochondria, the increased expression of caspase-3 and bax, along with down regulation of Bcl-2. Conclusion: These findings conclude that S. lappa is a cause of hepatic cancer cell death through apoptosis and a potential natural source suggesting furthermore investigation of its active compounds that are responsible for these observed activities.


Circulation ◽  
2001 ◽  
Vol 104 (suppl_1) ◽  
Author(s):  
Jürg Grünenfelder ◽  
Douglas N. Miniati ◽  
Seiichiro Murata ◽  
Volkmar Falk ◽  
E. Grant Hoyt ◽  
...  

Background Oxidative stress after ischemia/reperfusion of cardiac allografts leads to cytokine production. Bcl-2, an inhibitor of apoptosis, also has strong antioxidant properties. Caspase-3 is known to cleave bcl-2. This study tests the hypothesis that bcl-2 is downregulated while tumor necrosis factor-α (TNF-α) levels increase after cardiac transplantation. Furthermore, the use of caspase-3 inhibition was investigated as a strategy for preserving myocardial bcl-2 and mitochondrial cytochrome c after transplantation. Methods and Results PVG-to-ACI rat heterotopic cardiac transplantations were performed in 4 groups designed with 30 minutes’ ischemia and 4 or 8 hours of reperfusion (n=4 per group). Treatment consisted of DEVD-CHO 500 μg IP per animal to donor and recipient 2 hours before transplantation and 250 μg IC into allograft. Controls were treated with saline. Grafts were analyzed by reverse transcription–polymerase chain reaction for bcl-2 mRNA, by ELISA for TNF-α, for myeloperoxidase activity, and by Western blot for cytochrome c. In untreated groups, bcl-2 mRNA decreased significantly over time, whereas TNF-α increased significantly at 4 hours ( P =0.003) and returned to baseline after 8 hours’ reperfusion ( P =NS compared with normal hearts). Treatment with caspase-3 inhibitor showed significant upregulation of bcl-2 mRNA expression after 4 and 8 hours of reperfusion ( P <0.001 versus control), with a concomitant decrease in TNF-α to baseline levels. Myeloperoxidase activity in all groups was no different from that of normal hearts. Mitochondrial cytochrome c release increased in both control and treatment groups. Conclusions Bcl-2 is actively downregulated and TNF-α is upregulated in this model of cardiac allograft ischemia/reperfusion. Furthermore, the caspase-3 pathway is linked to this process, and blockade of caspase-3 can ameliorate reperfusion injury by upregulating bcl-2 and inhibiting TNF-α without affecting cytochrome c release.


2003 ◽  
Vol 284 (1) ◽  
pp. H141-H150 ◽  
Author(s):  
Terry L. Vanden Hoek ◽  
Yimin Qin ◽  
Kim Wojcik ◽  
Chang-Qing Li ◽  
Zuo-Hui Shao ◽  
...  

Although ischemia-reperfusion (I/R) can initiate apoptosis, the timing and contribution of the mitochondrial/cytochrome c apoptosis death pathway to I/R injury is unclear. We studied the timing of cytochrome c release during I/R and whether subsequent caspase activation contributes to reperfusion injury in confluent chick cardiomyocytes. One-hour simulated ischemia followed by 3-h reperfusion resulted in significant cell death, with most cell death evident during the reperfusion phase and demonstrating mitochondrial cytochrome c release within 5 min after reperfusion. By contrast, cells exposed to prolonged ischemia for 4 h had only marginally increased cell death and no detectable cytochrome c release into the cytosol. Caspase activation could not be detected after ischemia only, but it significantly increased after reperfusion. Caspase inhibitors benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone, Ac-Asp-Gln-Thr-Asp-H, or benzyloxycarbonyl-Leu-Glu (Ome)-His-Asp-(Ome)-fluoromethyl ketone given only at reperfusion significantly attenuated cell death and resulted in return of contraction. Antixoxidants decreased cytochrome c release, nuclear condensation, and cell death. These results suggest that reperfusion oxidants initiate cytochrome c release within minutes, and apoptosis within hours, significant enough to increase cell death and contractile dysfunction.


Sign in / Sign up

Export Citation Format

Share Document