scholarly journals Chloride secretion by cultures of pig tracheal gland cells

2012 ◽  
Vol 302 (10) ◽  
pp. L1098-L1106 ◽  
Author(s):  
J. H. Widdicombe ◽  
Rachel M. Borthwell ◽  
Mohammad Hajighasemi-Ossareh ◽  
Marrah E. Lachowicz-Scroggins ◽  
W. E. Finkbeiner ◽  
...  

Malfunction of airway submucosal glands contributes to the pathology of cystic fibrosis (CF), and cell cultures of CF human airway glands show defects in Cl− and water transport. Recently, a transgenic pig model of CF (the CF pig) has been developed. Accordingly, we have developed cell cultures of pig airway gland epithelium for use in investigating alterations in gland function in CF. Our cultures form tight junctions (as evidenced by high transepithelial electrical resistance) and show high levels of active anion secretion (measured as amiloride-insensitive short-circuit current). In agreement with recent results on human airway glands, neurohumoral agents that elevate intracellular Ca2+ potently stimulated anion secretion, while elevation of cAMP was comparatively ineffective. Our cultures express lactoferrin and lysozyme (serous gland cell markers) and MUC5B (the main mucin of airway glands). They are, therefore, potentially useful in determining if CF-related alterations in anion transport result in altered secretion of serous cell antimicrobial agents or mucus.

2008 ◽  
Vol 294 (6) ◽  
pp. C1443-C1453 ◽  
Author(s):  
Dong Wang ◽  
Ying Sun ◽  
Wei Zhang ◽  
Pingbo Huang

In airway epithelial cells, apical adenosine regulates transepithelial anion secretion by activation of apical cystic fibrosis transmembrane conductance regulator (CFTR) via adenosine receptors and cAMP/PKA signaling. However, the potent stimulation of anion secretion by adenosine is not correlated with its modest intracellular cAMP elevation, and these uncorrelated efficacies have led to the speculation that additional signaling pathways may be involved. Here, we showed that mucosal adenosine-induced anion secretion, measured by short-circuit current ( Isc), was inhibited by the PLC-specific inhibitor U-73122 in the human airway submucosal cell line Calu-3. In addition, the Isc was suppressed by BAPTA-AM (a Ca2+ chelator) and 2-aminoethoxydiphenyl borate (2-APB; an inositol 1,4,5-trisphosphate receptor blocker), but not by PKC inhibitors, suggesting the involvement of PKC-independent PLC/Ca2+ signaling. Ussing chamber and patch-clamp studies indicated that the adenosine-induced PLC/Ca2+ signaling stimulated basolateral Ca2+-activated potassium (KCa) channels predominantly via A2B adenosine receptors and contributed substantially to the anion secretion. Thus, our data suggest that apical adenosine activates contralateral K+ channels via PLC/Ca2+ and thereby increases the driving force for transepithelial anion secretion, synergizing with its modulation of ipsilateral CFTR via cAMP/PKA. Furthermore, the dual activation of CFTR and KCa channels by apical adenosine resulted in a mixed secretion of chloride and bicarbonate, which may alter the anion composition in the secretion induced by secretagogues that elicit extracellular ATP/adenosine release. Our findings provide novel mechanistic insights into the regulation of anion section by adenosine, a key player in the airway surface liquid homeostasis and mucociliary clearance.


2002 ◽  
Vol 283 (6) ◽  
pp. C1752-C1760 ◽  
Author(s):  
Pierre G. Milhaud ◽  
Satyanarayana R. Pondugula ◽  
Jun Ho Lee ◽  
Michael Herzog ◽  
Jacques Lehouelleur ◽  
...  

The ductal epithelium of the semicircular canal forms much of the boundary between the K+-rich luminal fluid and the Na+-rich abluminal fluid. We sought to determine whether the net ion flux producing the apical-to-basal short-circuit current ( I sc) in primary cultures was due to anion secretion and/or cation absorption and under control of receptor agonists. Net fluxes of 22Na, 86Rb, and36Cl demonstrated a basal-to-apical Cl−secretion that was stimulated by isoproterenol. Isoproterenol and norepinephrine increased I sc with an EC50 of 3 and 15 nM, respectively, and isoproterenol increased tissue cAMP of native canals with an EC50 of 5 nM. Agonists for adenosine, histamine, and vasopressin receptors had no effect on I sc. Isoproterenol stimulation of I sc and cAMP was inhibited by ICI-118551 (IC50 = 6 μM for I sc) but not by CGP-20712A (1 μM) in primary cultures, and similar results were found in native epithelium. I sc was partially inhibited by basolateral Ba2+ (IC50 = 0.27 mM) and ouabain, whereas responses to genistein, glibenclamide, and DIDS did not fully fit the profile for CFTR. Our findings show that the canal epithelium contributes to endolymph homeostasis by secretion of Cl− under β2-adrenergic control with cAMP as second messenger, a process that parallels the adrenergic control of K+ secretion by vestibular dark cells. The current work points to one possible etiology of endolymphatic hydrops in Meniere's disease and may provide a basis for intervention.


1992 ◽  
Vol 82 (6) ◽  
pp. 673-680 ◽  
Author(s):  
S. P. L. Travis ◽  
D. P. Jewell

1. Platelet-activating factor is an inflammatory mediator related to eicosanoids which is known to stimulate anion secretion in the distal colon. Since there are regional differences in ion transport within the colon, the influence of platelet-activating factors on ion transport and epithelial permeability has been studied in rabbit caecum and distal colon mounted in Ussing chambers. 2. The effect of platelet-activating factor (1–50 nmol/l) on net electrogenic ion transport was to stimulate a biphasic increase in short-circuit current in the distal colon but not in the caecum. The platelet-activating factor-induced rise in short-circuit current was shown by ion replacement and pharmacological inhibitor studies to be consistent with chloride and bicarbonate secretion in the early phase, but with chloride secretion alone in the later phase. The effect on ion transport was specific and reversible and was enhanced by 0.25% BSA. 3. Colonic permeability, assessed by transmucosal resistance and mannitol flux, was increased by platelet-activating factor in both the distal colon and the caecum. This was consistent with an effect on platelet-activating factor on the paracellular pathway, because resistance decreased even when transcellular chloride transport was inhibited by frusemide or ion replacement. A specific platelet-activating factor antagonist (U66985) inhibited the effects of platelet-activating factor in both the distal colon and the caecum. 4. The results show that platelet-activating factor stimulates anion secretion only in the distal colon, but increases permeability in both the caecum and the distal colon.


2001 ◽  
Vol 281 (4) ◽  
pp. L1028-L1034 ◽  
Author(s):  
Faiq J. Al-Bazzaz ◽  
Cynthia Gailey

Ion transport and the electric profile of distal airways of sheep lungs were studied in a miniature polypropylene chamber with a 1-mm aperture. Small airways with an inner diameter < 1 mm were isolated, opened longitudinally, and then mounted as a flat sheet onto the 1-mm aperture where it was glued and secured with an O-ring. Both sides of the tissue were bathed with identical physiological solutions at 37°C and oxygenated. Pooled data from 27 distal airways showed an inner airway diameter of 854 ± 22 (SE) μm and a transepithelial potential difference (PD) of 1.86 ± 0.29 mV, lumen negative. Short-circuit current ( I sc) was 25 ± 3.5 μA/cm2, tissue resistance was 96 ± 14 Ω, and conductance was 15.2 ± 1.7 mS/cm2. At baseline, amiloride-sensitive Na transport accounted for 51% of I sc (change in I sc = 9.7 ± 2.6 μA/cm2; n = 8 airways), corresponding to 0.36 μeq · cm−2 · h−1. Treatment with 0.1 mM bumetanide did not reduce the I sc( n = 5 airways). Exposure to 1 μM Ca ionophore A-23187 raised the I sc by 9 μA/cm2(47%; P < 0.03; n = 6 airways). The latter effect was blunted by bumetanide. Carbachol at 1 μM provoked a biphasic response, an initial rapid rise in I scfollowed by a decline ( n = 3 airways). There was no significant increase in PD or I sc in response to isoproterenol or dibutyryl cAMP. The data suggest that Na absorption constitutes at least 50% of baseline transport activity. Cl or other anion secretion such as HCO3 appears to be present and could be stimulated by raising intracellular Ca.


1999 ◽  
Vol 276 (4) ◽  
pp. C777-C787 ◽  
Author(s):  
Lane L. Clarke ◽  
Matthew C. Harline ◽  
Miguel A. Otero ◽  
Geraldine G. Glover ◽  
Richard C. Garrad ◽  
...  

Desensitization of P2Y2 receptor-activated anion secretion may limit the usefulness of extracellular nucleotides in secretagogue therapy of epithelial diseases, e.g., cystic fibrosis (CF). To investigate the desensitization process for endogenous P2Y2 receptors, freshly excised or cultured murine gallbladder epithelia (MGEP) were mounted in Ussing chambers to measure short-circuit current ( I sc), an index of electrogenic anion secretion. Luminal treatment with nucleotide receptor agonists increased the I sc with a potency profile of ATP = UTP > 2-methylthioATP >> α,β-methylene-ATP. RT-PCR revealed the expression of P2Y2 receptor mRNA in the MGEP cells. The desensitization of anion secretion required a 10-min preincubation with the P2Y2receptor agonist UTP and increased in a concentration-dependent manner (IC50 ≈ 10−6 M). Approximately 40% of the anion secretory response was unaffected by maximal desensitizing concentrations of UTP. Recovery from UTP-induced desensitization was rapid (<10 min) at preincubation concentrations less than the EC50 (1.9 × 10−6 M) but required progressively longer time periods at greater concentrations. UTP-induced total inositol phosphate production and intracellular Ca2+ mobilization desensitized with a concentration dependence similar to that of anion secretion. In contrast, maximal anion secretion induced by Ca2+ ionophore ionomycin was unaffected by preincubation with a desensitizing concentration of UTP. It was concluded that 1) desensitization of transepithelial anion secretion stimulated by the P2Y2 receptor agonist UTP is time and concentration dependent; 2) recovery from desensitization is prolonged (>90 min) at UTP concentrations >10−5 M; and 3) UTP-induced desensitization occurs before the operation of the anion secretory mechanism.


1985 ◽  
Vol 248 (1) ◽  
pp. G103-G109 ◽  
Author(s):  
R. D. McCabe ◽  
P. L. Smith

Stripped rabbit colonic mucosa was studied in vitro in Ussing chambers to further investigate the role of Ca in regulating K and Cl secretion stimulated by the divalent cation ionophore A23187, prostaglandin E1 (PGE1), or 8-bromo-cAMP (8BrcAMP). To assess the effects of these secretagogues on the paracellular shunt permeability, we measured the Na concentration dependence of the serosal-to-mucosal Na flux in the absence or presence of these stimuli. Results from these studies reveal that changes in net K and Cl secretion produced by secretory stimuli cannot be accounted for by a change in shunt permeability. The possible involvement of Ca in the secretory response of the colon to these stimuli was investigated by measuring the changes in Cl and K transport elicited by A23187, PGE1, or 8BrcAMP in the absence or presence of trifluoperazine (10(-4) M) added to the serosal bathing solution. Trifluoperazine alone did not significantly alter basal Na or Cl fluxes or short-circuit current (Isc) but did decrease transepithelial conductance (Gt) and the serosal-to-mucosal K flux. Pretreatment of the tissues with trifluoperazine significantly reduced or abolished the changes in K fluxes elicited by A23187, 8BrcAMP, or PGE1 without altering the changes in Cl transport, Isc, and Gt. These results suggest that K secretion induced by these secretagogues involves an increase in intracellular Ca concentration and may be mediated by calmodulin.


1994 ◽  
Vol 266 (5) ◽  
pp. L493-L501 ◽  
Author(s):  
B. Q. Shen ◽  
W. E. Finkbeiner ◽  
J. J. Wine ◽  
R. J. Mrsny ◽  
J. H. Widdicombe

Of 12 cell lines derived from human lung cancers, only Calu-3 cells showed high transepithelial resistance (Rte) and increases in short-circuit current (Isc) in response to mediators. Calu-3 cells formed polarized monolayers with tight junctions and Rte of approximately 100 omega.cm2. Baseline Isc was approximately 35 microA/cm2 and was increased by approximately 75 microA/cm2 on elevation of intracellular adenosine 3',5'-cyclic monophosphate (cAMP) by isoproterenol. Flux studies showed that the increase in Isc was due to Cl- secretion. Forskolin and permeant analogues of cAMP also increased Isc. Consistent with the presence of cAMP-dependent Cl- secretion, immunoprecipitation demonstrated the presence of the cystic fibrosis transmembrane conductance regulator (CFTR). Bradykinin, methacholine, trypsin, and histamine all transiently (15–30 s) elevated Isc, probably by increasing intracellular Ca concentration. Experiments in which the basolateral membrane was permeabilized with nystatin indicated that CFTR was substantially activated under baseline conditions and that Ca-activated Cl- channels were absent from the apical membrane. We anticipate that Calu-3 cells will prove useful in the study of Cl- secretion and other functions of human airway epithelial cells.


1991 ◽  
Vol 261 (2) ◽  
pp. L188-L194 ◽  
Author(s):  
P. I. Plews ◽  
Z. A. Abdel-Malek ◽  
C. A. Doupnik ◽  
G. D. Leikauf

The endothelins (ET) are a group of isopeptides produced by a number of cells, including canine tracheal epithelial cells. Because these compounds are endogenous peptides that may activate eicosanoid metabolism, we investigated the effects of ET on Cl secretion in canine tracheal epithelium. Endothelin 1 (ET-1) was found to produce a dose-dependent change in short-circuit current (Isc) that increased slowly and reached a maximal value within 10-15 min. When isopeptides of ET were compared, 300 nM ET-1 and ET-2 produced comparable maximal increases in Isc, whereas ET-3 produced smaller changes in Isc (half-maximal concentrations of 2.2, 7.2, and 10.4 nM, respectively). Ionic substitution of Cl with nontransported anions, iodide and gluconate, reduced ET-1-induced changes in Isc. Furthermore, the response was inhibited by the NaCl cotransport inhibitor, furosemide. In paired tissues, ET-1 significantly increased mucosal net 36Cl flux without significant effect on 22Na flux. The increase in Isc induced by ET was diminished by pretreatment with indomethacin. The second messengers mediating the increase in Isc were investigated in cultured canine tracheal epithelial cells. ET-1 stimulated the release of [3H]arachidonate from membrane phospholipids, increased intracellular Ca2+ (occasionally producing oscillations), and increased adenosine 3',5'-cyclic monophosphate accumulation. The latter was diminished by indomethacin. Thus ET is a potent agonist of Cl secretion (with the isopeptides having the following potency: ET-1 greater than or equal to ET-2 greater than ET-3) and acts, in part, through a cyclooxygenase-dependent mechanism.


2005 ◽  
Vol 288 (5) ◽  
pp. G956-G963 ◽  
Author(s):  
Kazi Mirajul Hoque ◽  
Vazhaikkurichi M. Rajendran ◽  
Henry J. Binder

Zn, an essential micronutrient and second most abundant trace element in cell and tissues, reduces stool output when administered to children with acute diarrhea. The mechanism by which Zn improves diarrhea is not known but could result from stimulating Na absorption and/or inhibiting anion secretion. The aim of this study was to investigate the direct effect of Zn on intestinal epithelial ion absorption and secretion. Rat ileum was partially stripped of serosal and muscle layers, and the mucosa was mounted in lucite chambers. Potential difference and short-circuit current were measured by conventional current-voltage clamp method.86Rb efflux and uptake were assessed for serosal K channel and Na-K-2Cl cotransport activity, respectively. Efflux experiments were performed in isolated cells preloaded with86Rb in the presence of ouabain and bumetanide, whereas uptake experiments were performed in low-Cl isotonic buffer containing Ba and ouabain. Neither mucosal nor serosal Zn affected glucose-stimulated Na absorption. In contrast, forskolin-induced Cl secretion was markedly reduced by serosal but not mucosal addition of Zn. Zn also substantially reversed the increase in Cl secretion induced by 8-bromoadenosine 3′,5′-cyclic monophosphate (8-BrcAMP) with half-maximal inhibitory concentration of 0.43 mM. In contrast, serosal Zn did not alter Cl secretion stimulated by carbachol, a Ca-dependent agonist. Zn inhibited 8-BrcAMP-stimulated86Rb efflux but not carbachol-stimulated86Rb efflux. Zn had no effect on bumetanide-sensitive86Rb uptake, Na-K-ATPase, or CFTR. We conclude from these studies that Zn inhibits cAMP-induced Cl secretion by blocking basolateral membrane K channels.


1993 ◽  
Vol 264 (2) ◽  
pp. G252-G260 ◽  
Author(s):  
V. Calderaro ◽  
E. Chiosi ◽  
R. Greco ◽  
A. M. Spina ◽  
A. Giovane ◽  
...  

Effects of Ca2+ on adenosine 3',5'-cyclic monophosphate (cAMP)-mediated Cl- secretion were investigated in intact mucosa and isolated crypt cells of rabbit descending colon. Addition of 10 microM prostaglandin (PG)E2 or forskolin to tissues incubated in Ca(2+)-free medium increased the size of short-circuit current (Isc) and Cl- secretion as estimated by unidirectional 36Cl flux measurements (net flux = -2.31 +/- 0.24 vs. -1.22 +/- 0.10 mueq.h-1.cm-2, n = 4, P < 0.001). Addition of 10 microM PGE2 to tissues incubated in 1.2 mM Ca2+ Ringer induced a 7-fold increase in mean cAMP level, whereas it produced an 11-fold increase in tissues exposed to Ca(2+)-free medium. Membrane preparations from whole mucosa incubated in Ca(2+)-free medium displayed a cyclic nucleotide phosphodiesterase activity significantly lower than controls (18.76 +/- 0.54 vs. 31.20 +/- 0.39 pmol cAMP. mg protein-1.min-1, means +/- SE, n = 4, P < 0.001). Ca2+ removal also affected adenylate cyclase (AC) responsiveness to agonists; AC activity increased in controls by 54 and 226% after stimulation with 10 microM PGE2 and forskolin, respectively, but it increased more (77 and 325%, respectively) after incubation in Ca(2+)-free solutions.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document