scholarly journals Carvedilol binding to β2-adrenergic receptors inhibits CFTR-dependent anion secretion in airway epithelial cells

2016 ◽  
Vol 310 (1) ◽  
pp. L50-L58 ◽  
Author(s):  
Elizabeth R. Peitzman ◽  
Nathan A. Zaidman ◽  
Peter J. Maniak ◽  
Scott M. O'Grady

Carvedilol functions as a nonselective β-adrenergic receptor (AR)/α1-AR antagonist that is used for treatment of hypertension and heart failure. Carvedilol has been shown to function as an inverse agonist, inhibiting G protein activation while stimulating β-arrestin-dependent signaling and inducing receptor desensitization. In the present study, short-circuit current ( Isc) measurements using human airway epithelial cells revealed that, unlike β-AR agonists, which increase Isc, carvedilol decreases basal and 8-(4-chlorophenylthio)adenosine 3′,5′-cyclic monophosphate-stimulated current. The decrease in Isc resulted from inhibition of the cystic fibrosis transmembrane conductance regulator (CFTR). The carvedilol effect was abolished by pretreatment with the β2-AR antagonist ICI-118551, but not the β1-AR antagonist atenolol or the α1-AR antagonist prazosin, indicating that its inhibitory effect on Isc was mediated through interactions with apical β2-ARs. However, the carvedilol effect was blocked by pretreatment with the microtubule-disrupting compound nocodazole. Furthermore, immunocytochemistry experiments and measurements of apical CFTR expression by Western blot analysis of biotinylated membranes revealed a decrease in the level of CFTR protein in monolayers treated with carvedilol but no significant change in monolayers treated with epinephrine. These results demonstrate that carvedilol binding to apical β2-ARs inhibited CFTR current and transepithelial anion secretion by a mechanism involving a decrease in channel expression in the apical membrane.

2007 ◽  
Vol 292 (5) ◽  
pp. L1304-L1312 ◽  
Author(s):  
Sarah K. Inglis ◽  
Sean G. Brown ◽  
Maree J. Constable ◽  
Niall McTavish ◽  
Richard E. Olver ◽  
...  

By analysis of whole cell membrane currents in Na+-absorbing H441 human airway epithelial cells, we have identified a K+ conductance ( GK) resistant to Ba2+ but sensitive to bupivacaine or extracellular acidification. In polarized H441 monolayers, we have demonstrated that bupivacaine, lidocaine, and quinidine inhibit basolateral membrane K+ current ( IBl) whereas Ba2+ has only a weak inhibitory effect. IBl was also inhibited by basolateral acidification, and, although subsequent addition of bupivacaine caused a further fall in IBl, acidification had no effect after bupivacaine, demonstrating that cells grown under these conditions express at least two different bupivacaine-sensitive K+ channels, only one of which is acid sensitive. Basolateral acidification also inhibited short-circuit current ( ISC), and basolateral bupivacaine, lidocaine, quinidine, and Ba2+ inhibited ISC at concentrations similar to those needed to inhibit IBl, suggesting that the K+ channels underlying IBl are part of the absorptive mechanism. Analyses using RT-PCR showed that mRNA encoding several two-pore domain K+ (K2P) channels was detected in cells grown under standard conditions (TWIK-1, TREK-1, TASK-2, TWIK-2, KCNK-7, TASK-3, TREK-2, THIK-1, and TALK-2). We therefore suggest that K2P channels underlie GK in unstimulated cells and so maintain the driving force for Na+ absorption. Since this ion transport process is vital to lung function, K2P channels thus play an important but previously undocumented role in pulmonary physiology.


2008 ◽  
Vol 294 (6) ◽  
pp. C1443-C1453 ◽  
Author(s):  
Dong Wang ◽  
Ying Sun ◽  
Wei Zhang ◽  
Pingbo Huang

In airway epithelial cells, apical adenosine regulates transepithelial anion secretion by activation of apical cystic fibrosis transmembrane conductance regulator (CFTR) via adenosine receptors and cAMP/PKA signaling. However, the potent stimulation of anion secretion by adenosine is not correlated with its modest intracellular cAMP elevation, and these uncorrelated efficacies have led to the speculation that additional signaling pathways may be involved. Here, we showed that mucosal adenosine-induced anion secretion, measured by short-circuit current ( Isc), was inhibited by the PLC-specific inhibitor U-73122 in the human airway submucosal cell line Calu-3. In addition, the Isc was suppressed by BAPTA-AM (a Ca2+ chelator) and 2-aminoethoxydiphenyl borate (2-APB; an inositol 1,4,5-trisphosphate receptor blocker), but not by PKC inhibitors, suggesting the involvement of PKC-independent PLC/Ca2+ signaling. Ussing chamber and patch-clamp studies indicated that the adenosine-induced PLC/Ca2+ signaling stimulated basolateral Ca2+-activated potassium (KCa) channels predominantly via A2B adenosine receptors and contributed substantially to the anion secretion. Thus, our data suggest that apical adenosine activates contralateral K+ channels via PLC/Ca2+ and thereby increases the driving force for transepithelial anion secretion, synergizing with its modulation of ipsilateral CFTR via cAMP/PKA. Furthermore, the dual activation of CFTR and KCa channels by apical adenosine resulted in a mixed secretion of chloride and bicarbonate, which may alter the anion composition in the secretion induced by secretagogues that elicit extracellular ATP/adenosine release. Our findings provide novel mechanistic insights into the regulation of anion section by adenosine, a key player in the airway surface liquid homeostasis and mucociliary clearance.


1992 ◽  
Vol 263 (1) ◽  
pp. L122-L127
Author(s):  
M. R. Van Scott ◽  
A. M. Paradiso

We investigated whether Ca2+ was involved in regulation of ion transport across rabbit distal airway epithelial cells by studying the effects that elevation of intracellular Ca2+ (Cai) had on the bioelectric properties of nonciliated bronchiolar (Clara) cell epithelia in culture. Exposure of Clara cells to 5 x 10(-7) M ionomycin increased Cai concentration and transepithelial short-circuit current (Isc). Changing extracellular Ca2+ concentration in the presence of ionomycin demonstrated that changes in Isc paralleled changes in Cai. Another ionophore, 4-bromo-A23187, also increased Cai and Isc. Ionomycin-induced changes in Isc were insensitive to amiloride and were inhibited greater than 50% by pretreating the cells with bumetanide or substituting gluconate for Cl- in the bathing solution. Bradykinin and carbachol, which increased Cai and caused an increase in Isc across tracheal cell cultures, had no effect on Cai or Isc in Clara cell preparations. These results support the hypothesis that changes in Cai are linked to regulation of Cl- secretion across bronchiolar epithelial cells, but physiological regulators of Cai in Clara cells remain to be defined.


2021 ◽  
pp. 2100671
Author(s):  
Frédéric Becq ◽  
Sandra Mirval ◽  
Thomas Carrez ◽  
Manuella Lévêque ◽  
Arnaud Billet ◽  
...  

Trikafta, currently the leading therapeutic in Cystic Fibrosis (CF), has demonstrated a real clinical benefit. This treatment is the triple combination therapy of two folding correctors elexacaftor/tezacaftor (VX445/VX661) plus the gating potentiator ivacaftor (VX770). In this study, our aim was to compare the properties of F508del-CFTR in cells treated with either lumacaftor (VX809), tezacaftor, elexacaftor, elexacaftor/tezacaftor with or without ivacaftor. We studied F508del-CFTR function, maturation and membrane localisation by Ussing chamber and whole-cell patch clamp recordings, Western blot and immunolocalization experiments. With human primary airway epithelial cells and the cell lines CFBE and BHK expressing F508del, we found that, whereas the combination elexacaftor/tezacaftor/ivacaftor was efficient in rescuing F508del-CFTR abnormal maturation, apical membrane location and function, the presence of ivacaftor limits these effects. The basal F508del-CFTR short-circuit current was significantly increased by elexacaftor/tezacaftor/ivacaftor and elexacaftor/tezacaftor compared to other correctors and non-treated cells, an effect dependent on ivacaftor and cAMP. These results suggest that the level of the basal F508del-CFTR current might be a marker for correction efficacy in CF cells. When cells were treated with ivacaftor combined to any correctors, the F508del-CFTR current was unresponsive to the subsequently acute addition of ivacaftor unlike the CFTR potentiators genistein and Cact-A1 which increased elexacaftor/tezacaftor/ivacaftor and elexacaftor/tezacaftor-corrected F508del-CFTR currents. These findings show that ivacaftor reduces the correction efficacy of Trikafta. Thus, combining elexacaftor/tezacaftor with a different potentiator might improve the therapeutic efficacy for treating CF patients.


2017 ◽  
Vol 44 (3) ◽  
pp. 1146-1160 ◽  
Author(s):  
Rui Shi ◽  
Zi-Ting Xiao ◽  
Yi-Jun Zheng ◽  
Yi-Lin Zhang ◽  
Jia-Wen Xu ◽  
...  

Background/Aims: Sputum symptoms are commonly seen in the elderly. This study aimed to identify an efficacious expectorant treatment stratagem through evaluating the secretion-promoting activation and cystic fibrosis transmembrane conductance regulator (CFTR) expression of the bioactive herbal monomer naringenin. Methods: Vectorial Cl- transport was determined by measuring short-circuit current (ISC) in rat airway epithelium. cAMP content was measured by ELISA in primary cultured epithelial cells and Calu-3 cells. CFTR expression in Calu-3 cells was determined by qPCR. Results: Addition of naringenin to the basolateral side of the rat airway led to a concentration-dependent sustained increase in ISC. The current was suppressed when exposed to Cl–-free solution or by bumetanide, BaCl2, and DPC but not by DIDS and IBMX. Forskolin-induced ISC increase and CFTRinh-172/MDL-12330A-induced ISC inhibition were not altered by naringenin. Intracellular cAMP content was significantly increased by naringenin. With lipopolysaccharide stimulation, CFTR expression was significantly reduced, and naringenin dose-dependently enhanced CFTR mRNA expression. Conclusion: These results demonstrate that naringenin has the ability to stimulate Cl- secretion, which is mediated by CFTR through a signaling pathway by increasing cAMP content. Moreover, naringenin can increase CFTR expression when organism CFTR expression is seriously hampered. Our data suggest a potentially effective treatment strategy for sputum.


2001 ◽  
Vol 281 (2) ◽  
pp. L450-L457 ◽  
Author(s):  
Marek Duszyk

Nitric oxide (NO) is continuously produced and released in human airways, but the biological significance of this process is unknown. In this study, we have used Calu-3 cells to investigate the effects of NO on transepithelial anion secretion. An inhibitor of NO synthase, NG-nitro-l-arginine methyl ester, reduced short- circuit current ( Isc), whereas an NO donor, S-nitrosoglutathione (GSNO), increased Isc, with an EC50∼1.2 μM. The NO-activated current was inhibited by diphenylamine-2-carboxylate, clotrimazole, and charybdotoxin. Selective permeabilization of cell membranes indicated that NO activated both apical anion channels and basolateral potassium channels. An inhibitor of soluble guanylate cyclase, 1 H-[1,2,4]oxadiazolo[4,3- a]quinoxalin-1-one, prevented activation of Iscby NO but not by 8-bromo-cGMP, suggesting that NO acts via a cGMP-dependent pathway. Sequential treatment of cells with forskolin and GSNO or 1-ethyl-2-benzimidazolinone and GSNO showed additive effects of these chemicals on Isc. Interestingly, GSNO elevated intracellular Ca2+concentration ([Ca2+]i) but had no effect on Iscactivated by thapsigargin. These results show that NO activates transepithelial anion secretion via a cGMP-dependent pathway that involves cross talk between NO and [Ca2+]i.


2001 ◽  
Vol 281 (5) ◽  
pp. L1164-L1172 ◽  
Author(s):  
Canwen Jiang ◽  
Edward R. Lee ◽  
Mathieu B. Lane ◽  
Yong-Fu Xiao ◽  
David J. Harris ◽  
...  

Defective cystic fibrosis (CF) transmembrane conductance regulator (CFTR)-mediated Cl− transport across the apical membrane of airway epithelial cells is implicated in the pathophysiology of CF lungs. A strategy to compensate for this loss is to augment Cl− transport through alternative pathways. We report here that partial correction of this defect could be attained through the incorporation of artificial anion channels into the CF cells. Introduction of GL-172, a synthetic analog of squalamine, into CFT1 cells increased cell membrane halide permeability. Furthermore, when a Cl− gradient was generated across polarized monolayers of primary human airway or Fischer rat thyroid cells in an Ussing chamber, addition of GL-172 caused an increase in the equivalent short-circuit current. The magnitude of this change in short-circuit current was ∼30% of that attained when CFTR was maximally stimulated with cAMP agonists. Patch-clamp studies showed that addition of GL-172 to CFT1 cells also increased whole cell Cl− currents. These currents displayed a linear current-voltage relationship and no time dependence. Additionally, administration of GL-172 to the nasal epithelium of transgenic CF mice induced a hyperpolarization response to perfusion with a low-Cl− solution, indicating restoration of Cl− secretion. Together, these results demonstrate that in CF airway epithelial cells, administration of GL-172 is capable of partially correcting the defective Cl− secretion.


1995 ◽  
Vol 268 (1) ◽  
pp. C243-C251 ◽  
Author(s):  
M. E. Egan ◽  
E. M. Schwiebert ◽  
W. B. Guggino

When nonepithelial cell types expressing the delta F508-cystic fibrosis transmembrane conductance regulator (CFTR) mutation are grown at reduced temperatures, the mutant protein can be properly processed. The effect of low temperatures on Cl- channel activity in airway epithelial cells that endogenously express the delta F508-CFTR mutation has not been investigated. Therefore, we examined the effect of incubation temperature on both CFTR and outwardly rectifying Cl- channel (ORCC) activity in normal, in cystic fibrosis (CF)-affected, and in wild-type CFTR-complemented CF airway epithelia with use of a combination of inside-out and whole cell patch-clamp recording, 36Cl- efflux assays, and immunocytochemistry. We report that incubation of CF-affected airway epithelial cells at 25-27 degrees C is associated with the appearance of a protein kinase A-stimulated CFTR-like Cl- conductance. In addition to the appearance of CFTR Cl- channel activity, there is, however, a decrease in the number of active ORCC when cells are grown at 25-27 degrees C, suggesting that the decrease in incubation temperature may be associated with multiple alterations in ion channel expression and/or regulation in airway epithelial cells.


2009 ◽  
Vol 297 (3) ◽  
pp. L520-L529 ◽  
Author(s):  
Leena P. Desai ◽  
Steven R. White ◽  
Christopher M. Waters

JNK is a nonreceptor kinase involved in the early events that signal cell migration after injury. However, the linkage to early signals required to initiate the migration response to JNK has not been defined in airway epithelial cells, which exist in an environment subjected to cyclic mechanical strain (MS). The present studies demonstrate that the JNK/stress-activated protein kinase-associated protein 1 (JSAP1; also termed JNK-interacting protein 3, JIP3), a scaffold factor for MAPK cascades that links JNK activation to focal adhesion kinase (FAK), are both associated and activated following mechanical injury in 16HBE14o− human airway epithelial cells and that both FAK and JIP3 phosphorylation seen after injury are decreased in cells subjected to cyclic MS. Overexpression of either wild-type (WT)-FAK or WT-JIP3 enhanced phosphorylation and kinase activation of JNK and reduced the inhibitory effect of cyclic MS. These results suggest that cyclic MS impairs signaling of cell migration after injury via a pathway that involves FAK-JIP3-JNK.


Sign in / Sign up

Export Citation Format

Share Document