scholarly journals Identification of multiple MAPK-mediated transcription factors regulated by tobacco smoke in airway epithelial cells

2007 ◽  
Vol 293 (2) ◽  
pp. L480-L490 ◽  
Author(s):  
Jinming Zhao ◽  
Richart Harper ◽  
Aaron Barchowsky ◽  
Y. P. Peter Di

Activation and regulation of transcription factors (TFs) are the major mechanisms regulating changes in gene expression upon environmental exposure. Tobacco smoke (TS) is a complex mixture of chemicals, each of which could act through different signal cascades, leading to the regulation of distinct TFs and alterations in subsequent gene expression. We proposed that TS exposure affects inflammatory gene expression at the transcriptional level by modulating the DNA binding activities of TFs. To investigate transcriptional regulation upon TS exposure, a protein/DNA array was applied to screen TFs that are affected by TS exposure. This array-based screening allowed us to simultaneously detect 244 different TFs. Our results indicated that multiple TFs were rapidly activated upon TS exposure. DNA-binding activity of differentially expressed TFs was confirmed by EMSA. Our results showed that at least 20 TFs displayed more than twofold expressional changes after smoke treatment. Ten smoke-induced TFs, including NF-κB, VDR, ISRE, and RSRFC4, were involved in MAPK signaling pathways. The NF-κB family, which is involved in inflammation-induced gene activation, was selected for further study to characterize TS exposure-induced transcriptional activation. Western blot analysis and immunofluorescence microscopy indicated that TS exposure induced phosphorylation of IκB and translocation of NF-κB p65/p50 heterodimers into the nucleus. This activity was abrogated by the MAPK inhibitors PD98059 and U0126. Our results confirmed that activation of MAPK signaling pathways by TS exposure increased transcriptional activity of NF-κB. These data provide a potential mechanism for TS-induced inflammatory gene expression.

2018 ◽  
Vol 33 (3) ◽  
pp. 4188-4202 ◽  
Author(s):  
Tabea Riedlinger ◽  
Robert Liefke ◽  
Johanna Meier-Soelch ◽  
Liane Jurida ◽  
Andrea Nist ◽  
...  

Immunity ◽  
2017 ◽  
Vol 47 (3) ◽  
pp. 421-434.e3 ◽  
Author(s):  
Prabhat K. Purbey ◽  
Philip O. Scumpia ◽  
Peter J. Kim ◽  
Ann-Jay Tong ◽  
Keisuke S. Iwamoto ◽  
...  

2016 ◽  
Vol 76 (1) ◽  
pp. 277-285 ◽  
Author(s):  
Chiara Angiolilli ◽  
Pawel A Kabala ◽  
Aleksander M Grabiec ◽  
Iris M Van Baarsen ◽  
Bradley S Ferguson ◽  
...  

ObjectivesNon-selective histone deacetylase (HDAC) inhibitors (HDACi) have demonstrated anti-inflammatory properties in both in vitro and in vivo models of rheumatoid arthritis (RA). Here, we investigated the potential contribution of specific class I and class IIb HDACs to inflammatory gene expression in RA fibroblast-like synoviocytes (FLS).MethodsRA FLS were incubated with pan-HDACi (ITF2357, givinostat) or selective HDAC1/2i, HDAC3/6i, HDAC6i and HDAC8i. Alternatively, FLS were transfected with HDAC3, HDAC6 or interferon (IFN)-α/β receptor alpha chain (IFNAR1) siRNA. mRNA expression of interleukin (IL)-1β-inducible genes was measured by quantitative PCR (qPCR) array and signalling pathway activation by immunoblotting and DNA-binding assays.ResultsHDAC3/6i, but not HDAC1/2i and HDAC8i, significantly suppressed the majority of IL-1β-inducible genes targeted by pan-HDACi in RA FLS. Silencing of HDAC3 expression reproduced the effects of HDAC3/6i on gene regulation, contrary to HDAC6-specific inhibition and HDAC6 silencing. Screening of the candidate signal transducers and activators of transcription (STAT)1 transcription factor revealed that HDAC3/6i abrogated STAT1 Tyr701 phosphorylation and DNA binding, but did not affect STAT1 acetylation. HDAC3 activity was required for type I IFN production and subsequent STAT1 activation in FLS. Suppression of type I IFN release by HDAC3/6i resulted in reduced expression of a subset of IFN-dependent genes, including the chemokines CXCL9 and CXCL11.ConclusionsInhibition of HDAC3 in RA FLS largely recapitulates the effects of pan-HDACi in suppressing inflammatory gene expression, including type I IFN production in RA FLS. Our results identify HDAC3 as a potential therapeutic target in the treatment of RA and type I IFN-driven autoimmune diseases.


Sign in / Sign up

Export Citation Format

Share Document