TGF-β enhances deposition of perlecan from COPD airway smooth muscle

2012 ◽  
Vol 302 (3) ◽  
pp. L325-L333 ◽  
Author(s):  
Yukikazu Ichimaru ◽  
David I. Krimmer ◽  
Janette K. Burgess ◽  
Judith L. Black ◽  
Brian G. G. Oliver

Chronic obstructive pulmonary disease (COPD) and asthma are characterized by irreversible remodeling of the airway walls, including thickening of the airway smooth muscle layer. Perlecan is a large, multidomain, proteoglycan that is expressed in the lungs, and in other organ systems, and has been described to have a role in cell adhesion, angiogenesis, and proliferation. This study aimed to investigate functional properties of the different perlecan domains in relation to airway smooth muscle cells (ASMC). Primary human ASMC obtained from donors with asthma ( n = 13), COPD ( n = 12), or other lung disease ( n = 20) were stimulated in vitro with 1 ng/ml transforming growth factor-β1 (TGF-β1) before perlecan deposition and cytokine release were analyzed. In some experiments, inhibitors of signaling molecules were added. Perlecan domains I–V were seeded on tissue culture plates at 10 μg/ml with 1 μg/ml collagen I as a control. ASM was incubated on top of the peptides before being analyzed for attachment, proliferation, and wound healing. TGF-β1 upregulated deposition of perlecan by ASMC from COPD subjects only. TGF-β1 upregulated release of IL-6 into the supernatant of ASMC from all subjects. Inhibitors of SMAD and JNK signaling molecules decreased TGF-β1-induced perlecan deposition by COPD ASMC. Attachment of COPD ASMC was upregulated by collagen I and perlecan domains IV and V, while perlecan domain II upregulated attachment only of asthmatic ASMC. Seeding on perlecan domains did not increase proliferation of any ASMC type. TGF-β1-induced perlecan deposition may enhance attachment of migrating ASMC in vivo and thus may be a mechanism for ASMC layer hypertrophy in COPD.

2013 ◽  
Vol 32 (3) ◽  
pp. 629-636 ◽  
Author(s):  
XIN ZENG ◽  
YING CHENG ◽  
YUEJUN QU ◽  
JIDE XU ◽  
ZHIYUAN HAN ◽  
...  

2009 ◽  
Vol 106 (4) ◽  
pp. 1257-1263 ◽  
Author(s):  
Neil R. Gleason ◽  
George Gallos ◽  
Yi Zhang ◽  
Charles W. Emala

GABAA channels are ubiquitously expressed on neuronal cells and act via an inward chloride current to hyperpolarize the cell membrane of mature neurons. Expression and function of GABAA channels on airway smooth muscle cells has been demonstrated in vitro. Airway smooth muscle cell membrane hyperpolarization contributes to relaxation. We hypothesized that muscimol, a selective GABAA agonist, could act on endogenous GABAA channels expressed on airway smooth muscle to attenuate induced increases in airway pressures in anesthetized guinea pigs in vivo. In an effort to localize muscimol's effect to GABAA channels expressed on airway smooth muscle, we pretreated guinea pigs with a selective GABAA antagonist (gabazine) or eliminated lung neural control from central parasympathetic, sympathetic, and nonadrenergic, noncholinergic (NANC) nerves before muscimol treatment. Pretreatment with intravenous muscimol alone attenuated intravenous histamine-, intravenous acetylcholine-, or vagal nerve-stimulated increases in peak pulmonary inflation pressure. Pretreatment with the GABAA antagonist gabazine blocked muscimol's effect. After the elimination of neural input to airway tone by central parasympathetic nerves, peripheral sympathetic nerves, and NANC nerves, intravenous muscimol retained its ability to block intravenous acetylcholine-induced increases in peak pulmonary inflation pressures. These findings demonstrate that the GABAA agonist muscimol acting specifically via GABAA channel activation attenuates airway constriction independently of neural contributions. These findings suggest that therapeutics directed at the airway smooth muscle GABAA channel may be a novel therapy for airway constriction following airway irritation and possibly more broadly in diseases such as asthma and chronic obstructive pulmonary disease.


2011 ◽  
Vol 300 (2) ◽  
pp. L295-L304 ◽  
Author(s):  
Charalambos Michaeloudes ◽  
Maria B. Sukkar ◽  
Nadia M. Khorasani ◽  
Pankaj K. Bhavsar ◽  
Kian Fan Chung

Reactive oxygen species (ROS) are generated as a result of normal cellular metabolism, mainly through the mitochondria and peroxisomes, but their release is enhanced by the activation of oxidant enzymes such as NADPH oxidases or downregulation of endogenous antioxidant enzymes such as manganese-superoxide dismutase (MnSOD) and catalase. Transforming growth factor-β (TGF-β), found to be overexpressed in airway smooth muscle (ASM) from asthmatic and chronic obstructive pulmonary disease patients, may be a pivotal regulator of abnormal ASM cell (ASMC) function in these diseases. An important effect of TGF-β on ASMC inflammatory responses is the induction of IL-6 release. TGF-β also triggers intracellular ROS release in ASMCs by upregulation of NADPH oxidase 4 (Nox4). However, the effect of TGF-β on the expression of key antioxidant enzymes and subsequently on oxidant/antioxidant balance is unknown. Moreover, the role of redox-dependent pathways in the mediation of the proinflammatory effects of TGF-β in ASMCs is unclear. In this study, we show that TGF-β induced the expression of Nox4 while at the same time inhibiting the expression of MnSOD and catalase. This change in oxidant/antioxidant enzymes was accompanied by elevated ROS levels and IL-6 release. Further studies revealed a role for Smad3 and phosphatidyl-inositol kinase-mediated pathways in the induction of oxidant/antioxidant imbalance and IL-6 release. The changes in oxidant/antioxidant enzymes and IL-6 release were reversed by the antioxidants N-acetyl-cysteine (NAC) and ebselen through inhibition of Smad3 phosphorylation, indicating redox-dependent activation of Smad3 by TGF-β. Moreover, these findings suggest a potential role for NAC in preventing TGF-β-mediated pro-oxidant and proinflammatory responses in ASMCs. Knockdown of Nox4 using small interfering RNA partially prevented the inhibition of MnSOD but had no effect on catalase and IL-6 expression. These findings provide novel insights into redox regulation of ASM function by TGF-β.


2011 ◽  
Vol 300 (6) ◽  
pp. L958-L966 ◽  
Author(s):  
Paul-André Risse ◽  
Taisuke Jo ◽  
Fernando Suarez ◽  
Nobuaki Hirota ◽  
Barbara Tolloczko ◽  
...  

IL-13 is an important mediator of allergen-induced airway hyperresponsiveness. This Th2 cytokine, produced by activated T cells, mast cells, and basophils, has been described to mediate a part of its effects independently of inflammation through a direct modulation of the airway smooth muscle (ASM). Previous studies demonstrated that IL-13 induces hyperresponsiveness in vivo and enhances calcium signaling in response to contractile agonists in vitro. We hypothesized that IL-13 drives human ASM cells (ASMC) to a procontractile phenotype. We evaluated ASM phenotype through the ability of the cell to proliferate, to contract, and to express contractile protein in response to IL-13. We found that IL-13 inhibits human ASMC proliferation (expression of Ki67 and bromodeoxyuridine incorporation) in response to serum, increasing the number of cells in G0/G1 phase and decreasing the number of cells in G2/M phases of the cell cycle. IL-13-induced inhibition of proliferation was not dependent on signal transducer and activator of transcription-6 but was IL-13Rα2 receptor dependent and associated with a decrease of Kruppel-like factor 5 expression. In parallel, IL-13 increased calcium signaling and the stiffening of human ASMC in response to 1 μM histamine, whereas the stiffening response to 30 mM KCl was unchanged. However, Western blot analysis showed unchanged levels of calponin, smooth muscle α-actin, vinculin, and myosin. We conclude that IL-13 inhibits proliferation via the IL-13Rα2 receptor and induces hypercontractility of human ASMC without change of the phenotypic markers of contractility.


2006 ◽  
Vol 291 (3) ◽  
pp. L312-L321 ◽  
Author(s):  
Abdelilah Soussi Gounni

The airway smooth muscle (ASM) has been typically described as a contractile tissue, responding to neurotransmitters and inflammatory mediators. However, it has recently been recognized that ASM cells can also secrete cytokines and chemokines and express cell adhesion molecules that are important for the perpetuation and modulation of airway inflammation. Recent progress has revealed the importance of IgE Fc receptors in stimulating and modulating the function of these cells. In particular, the high-affinity receptor for IgE (FcεRI) has been identified in primary human ASM cells in vitro and in vivo within bronchial biopsies of atopic asthmatic individuals. Moreover, activation of this receptor has been found to induce marked increases in the intracellular calcium concentrations and T helper 2 cytokines and chemokines release. This and other evidence discussed in this review provide an emerging view of FcεR/IgE network as a critical modulator of ASM cell function in allergic asthma.


2013 ◽  
Vol 305 (5) ◽  
pp. L396-L403 ◽  
Author(s):  
Elizabeth A. Townsend ◽  
Charles W. Emala

Asthma is a disease of the airways with symptoms including exaggerated airway narrowing and airway inflammation. Early asthma therapies used methylxanthines to relieve symptoms, in part, by inhibiting cyclic nucleotide phosphodiesterases (PDEs), the enzyme responsible for degrading cAMP. The classification of tissue-specific PDE subtypes and the clinical introduction of PDE-selective inhibitors for chronic obstructive pulmonary disease (i.e., roflumilast) have reopened the possibility of using PDE inhibition in the treatment of asthma. Quercetin is a naturally derived PDE4-selective inhibitor found in fruits, vegetables, and tea. We hypothesized that quercetin relaxes airway smooth muscle via cAMP-mediated pathways and augments β-agonist relaxation. Tracheal rings from male A/J mice were mounted in myographs and contracted with acetylcholine (ACh). Addition of quercetin (100 nM-1 mM) acutely and concentration-dependently relaxed airway rings precontracted with ACh. In separate studies, pretreatment with quercetin (100 μM) prevented force generation upon exposure to ACh. In additional studies, quercetin (50 μM) significantly potentiated isoproterenol-induced relaxations. In in vitro assays, quercetin directly attenuated phospholipase C activity, decreased inositol phosphate synthesis, and decreased intracellular calcium responses to Gq-coupled agonists (histamine or bradykinin). Finally, nebulization of quercetin (100 μM) in an in vivo model of airway responsiveness significantly attenuated methacholine-induced increases in airway resistance. These novel data show that the natural PDE4-selective inhibitor quercetin may provide therapeutic relief of asthma symptoms and decrease reliance on short-acting β-agonists.


2020 ◽  
Author(s):  
Jopeth Ramis ◽  
Robert Middlewick ◽  
Francesco Pappalardo ◽  
Jennifer T. Cairns ◽  
Iain D. Stewart ◽  
...  

AbstractAirway smooth muscle cells (ASM) are fundamental to asthma pathogenesis, influencing bronchoconstriction, airway hyper-responsiveness, and airway remodelling. Extracellular matrix (ECM) can influence tissue remodelling pathways, however, to date no study has investigated the effect of ASM ECM stiffness and crosslinking on the development of asthmatic airway remodelling. We hypothesised that TGFβ activation by ASM is influenced by ECM in asthma and sought to investigate the mechanisms involved.This study combines in vitro and in vivo approaches: human ASM cells were used in vitro to investigate basal TGFβ activation and expression of ECM crosslinking enzymes. Human bronchial biopsies from asthmatic and non-asthmatic donors were used to confirm LOXL2 expression ASM. A chronic ovalbumin model of asthma was used to study the effect of LOXL2 inhibition on airway remodelling.We found that ASM cells from asthmatics activated more TGFβ basally than non-asthmatic controls and that diseased cell-derived ECM influences levels of TGFβ activated. Our data demonstrate that the ECM crosslinking enzyme LOXL2 is increased in asthmatic ASM cells and in bronchial biopsies. Crucially, we show that LOXL2 inhibition reduces ECM stiffness and TGFβ activation in vitro, and can reduce subepithelial collagen deposition and ASM thickness, two features of airway remodelling, in an ovalbumin mouse model of asthma.These data are the first to highlight a role for LOXL2 in the development of asthmatic airway remodelling and suggest that LOXL2 inhibition warrants further investigation as a potential therapy to reduce remodelling of the airways in severe asthma.


1995 ◽  
Vol 268 (2) ◽  
pp. L201-L206 ◽  
Author(s):  
C. Vannier ◽  
T. L. Croxton ◽  
L. S. Farley ◽  
C. A. Hirshman

Hypoxia dilates airways in vivo and reduces active tension of airway smooth muscle in vitro. To determine whether hypoxia impairs Ca2+ entry through voltage-dependent channels (VDC), we tested the ability of dihydropyridines to modulate hypoxia-induced relaxation of KCl- and carbamyl choline (carbachol)-contracted porcine bronchi. Carbachol- or KCl-contracted bronchial rings were exposed to progressive hypoxia in the presence or absence of 1 microM BAY K 8644 (an L-type-channel agonist). In separate experiments, rings were contracted with carbachol or KCl, treated with nifedipine (a VDC antagonist), and finally exposed to hypoxia. BAY K 8644 prevented hypoxia-induced relaxation in KCl-contracted bronchi. Nifedipine (10(-5) M) totally relaxed KCl- contracted bronchi. Carbachol-contracted bronchi were only partially relaxed by nifedipine but were completely relaxed when the O2 concentration of the gas was reduced from 95 to 0%. These data indicate that hypoxia can reduce airway smooth muscle tone by limiting entry of Ca2+ through a dihydropyridine-sensitive pathway, but that other mechanisms also contribute to hypoxia-induced relaxation of carbachol-contracted bronchi.


1996 ◽  
Vol 271 (6) ◽  
pp. L1014-L1022 ◽  
Author(s):  
R. Rajah ◽  
S. E. Nunn ◽  
D. J. Herrick ◽  
M. M. Grunstein ◽  
P. Cohen

We have previously demonstrated that the asthma-associated proinflammatory eicosanoid leukotriene D4 (LTD4) is comitogenic with insulin-like growth factors (IGF) in airway smooth muscle (ASM) cells. This synergistic effect of LTD4 and IGF on ASM cell growth involves proteolysis of ASM-produced inhibitory IGF-binding proteins (IGFBP). In this report, we analyzed the conditioned media (CM) from LTD4-treated human ASM cells (ASM-LTD4-CM) by Western ligand blotting and demonstrated a marked LTD4-induced reduction in the levels of the intact IGFBP (predominantly IGFBP-2) secreted by these cells. The IGFBP-2 in the ASM-LTD4-CM was identified as lower-molecular-weight fragments by Western immunoblotting. Incubation with 125I-labeled IGFBP demonstrated that an IGFBP protease was induced in the ASM cells in response to LTD4 treatment. Immunodepletion of ASM-LTD4-CM with anti-matrix metalloproteinase (MMP)-1 antibodies demonstrated a dose-dependent reduction of IGFBP proteolysis. Tissue inhibitor of MMP-1 and Batimastat (synthetic) inhibited proteolysis of IGFBP. Immunoblotting the ASM-LTD4-CM with anti-MMP-1 demonstrated a dose-dependent increase in MMP-1 protein. Similar results were also obtained by immunocytochemistry. Collectively, these observations demonstrate that MMP-1 is an IGFBP protease induced by leukotrienes that plays a significant role in modulating IGF action in ASM cells. A similar mechanism may be applicable in vivo in the airways of patients with asthma.


Sign in / Sign up

Export Citation Format

Share Document