Inhibition of dihydropyridine-sensitive calcium entry in hypoxic relaxation of airway smooth muscle

1995 ◽  
Vol 268 (2) ◽  
pp. L201-L206 ◽  
Author(s):  
C. Vannier ◽  
T. L. Croxton ◽  
L. S. Farley ◽  
C. A. Hirshman

Hypoxia dilates airways in vivo and reduces active tension of airway smooth muscle in vitro. To determine whether hypoxia impairs Ca2+ entry through voltage-dependent channels (VDC), we tested the ability of dihydropyridines to modulate hypoxia-induced relaxation of KCl- and carbamyl choline (carbachol)-contracted porcine bronchi. Carbachol- or KCl-contracted bronchial rings were exposed to progressive hypoxia in the presence or absence of 1 microM BAY K 8644 (an L-type-channel agonist). In separate experiments, rings were contracted with carbachol or KCl, treated with nifedipine (a VDC antagonist), and finally exposed to hypoxia. BAY K 8644 prevented hypoxia-induced relaxation in KCl-contracted bronchi. Nifedipine (10(-5) M) totally relaxed KCl- contracted bronchi. Carbachol-contracted bronchi were only partially relaxed by nifedipine but were completely relaxed when the O2 concentration of the gas was reduced from 95 to 0%. These data indicate that hypoxia can reduce airway smooth muscle tone by limiting entry of Ca2+ through a dihydropyridine-sensitive pathway, but that other mechanisms also contribute to hypoxia-induced relaxation of carbachol-contracted bronchi.

2017 ◽  
Vol 312 (3) ◽  
pp. L348-L357 ◽  
Author(s):  
Morgan Gazzola ◽  
Katherine Lortie ◽  
Cyndi Henry ◽  
Samuel Mailhot-Larouche ◽  
David G. Chapman ◽  
...  

Force adaptation, a process whereby sustained spasmogenic activation (viz., tone) of airway smooth muscle (ASM) increases its contractile capacity, has been reported in isolated ASM tissues in vitro, as well as in mice in vivo. The objective of the present study was to assess the effect of tone on airway responsiveness in humans. Ten healthy volunteers underwent methacholine challenge on two occasions. One challenge consisted of six serial doses of saline followed by a single high dose of methacholine. The other consisted of six low doses of methacholine 5 min apart followed by a higher dose. The cumulative dose was identical for both challenges. After both methacholine challenges, subjects took a deep inspiration (DI) to total lung capacity as another way to probe ASM mechanics. Responses to methacholine and the DI were measured using a multifrequency forced oscillation technique. Compared with a single high dose, the challenge preceded by tone led to an elevated response measured by respiratory system resistance (Rrs) and reactance at 5 Hz. However, there was no difference in the increase in Rrs at 19 Hz, suggesting a predominant effect on smaller airways. Increased tone also reduced the efficacy of DI, measured by an attenuated maximal dilation during the DI and an increased renarrowing post-DI. We conclude that ASM tone increases small airway responsiveness to inhaled methacholine and reduces the effectiveness of DI in healthy humans. This suggests that force adaptation may contribute to airway hyperresponsiveness and the reduced bronchodilatory effect of DI in asthma.


2018 ◽  
Vol 51 (5) ◽  
pp. 1701680 ◽  
Author(s):  
Igor L. Chernyavsky ◽  
Richard J. Russell ◽  
Ruth M. Saunders ◽  
Gavin E. Morris ◽  
Rachid Berair ◽  
...  

Bronchial thermoplasty is a treatment for asthma. It is currently unclear whether its histopathological impact is sufficiently explained by the proportion of airway wall that is exposed to temperatures necessary to affect cell survival.Airway smooth muscle and bronchial epithelial cells were exposed to media (37–70°C) for 10 s to mimic thermoplasty. In silico we developed a mathematical model of airway heat distribution post-thermoplasty. In vivo we determined airway smooth muscle mass and epithelial integrity pre- and post-thermoplasty in 14 patients with severe asthma.In vitro airway smooth muscle and epithelial cell number decreased significantly following the addition of media heated to ≥65°C. In silico simulations showed a heterogeneous heat distribution that was amplified in larger airways, with <10% of the airway wall heated to >60°C in airways with an inner radius of ∼4 mm. In vivo at 6 weeks post-thermoplasty, there was an improvement in asthma control (measured via Asthma Control Questionnaire-6; mean difference 0.7, 95% CI 0.1–1.3; p=0.03), airway smooth muscle mass decreased (absolute median reduction 5%, interquartile range (IQR) 0–10; p=0.03) and epithelial integrity increased (14%, IQR 6–29; p=0.007). Neither of the latter two outcomes was related to improved asthma control.Integrated in vitro and in silico modelling suggest that the reduction in airway smooth muscle post-thermoplasty cannot be fully explained by acute heating, and nor did this reduction confer a greater improvement in asthma control.


Author(s):  
Ynuk Bossé

The deep inspiration (DI) maneuver entices a great deal of interest because of its ability to temporarily ease the flow of air into the lungs. This salutary effect of a DI is proposed to be mediated, at least partially, by momentarily increasing the operating length of airway smooth muscle (ASM). Concerningly, this premise is largely derived from a growing body of in vitro studies investigating the effect of stretching ASM by different magnitudes on its contractility. The relevance of these in vitro findings remains uncertain, as the real range of strains ASM undergoes in vivo during a DI is somewhat elusive. In order to understand the regulation of ASM contractility by a DI and to infer on its putative contribution to the bronchodilator effect of a DI, it is imperative that in vitro studies incorporate levels of strains that are physiologically relevant. This review summarizes the methods that may be used in vivo in humans to estimate the strain experienced by ASM during a DI from functional residual capacity (FRC) to total lung capacity (TLC). The strengths and limitations of each method, as well as the potential confounders, are also discussed. A rough estimated range of ASM strains is provided for the purpose of guiding future in vitro studies that aim at quantifying the regulatory effect of DI on ASM contractility. However, it is emphasized that, owing to the many limitations and confounders, more studies will be needed to reach conclusive statements.


1988 ◽  
Vol 65 (6) ◽  
pp. 2524-2530 ◽  
Author(s):  
H. Don ◽  
D. G. Baker ◽  
C. A. Richardson

Published in vivo experiments have not supported in vitro reports of the presence of nonadrenergic noncholinergic (NANC) inhibitory pathways in the cat trachea. We therefore examined these pathways, measuring tension in an innervated tracheal segment, flow resistance in more distal airways, and dynamic compliance, in 10 anesthetized mechanically ventilated cats. Initially, cervical vagal stimulation evoked contraction followed by relaxation of smooth muscle of trachea and lower airways; sympathetic stimulation evoked relaxation only. After muscarinic blockade and restoration of smooth muscle tone with 5-hydroxytryptamine (5-HT) applied topically to the tracheal mucosa, vagal stimulation did not affect tracheal segment tension, whereas sympathetic-evoked relaxation was preserved. Similar results were found when tone was restored with intravenous 5-HT, with vagal stimulation also decreasing resistance and increasing compliance. We conclude that NANC pathways are present in lower airways but not in the cervical trachea of the cat. We hypothesize that parasympathetic constriction of cat airway smooth muscle can occur without simultaneous NANC activation, whereas NANC activity occurs only in tandem with parasympathetic stimulation.


2003 ◽  
Vol 95 (1) ◽  
pp. 448-453 ◽  
Author(s):  
Jahanbakhsh Naghshin ◽  
Lu Wang ◽  
Peter D. Paré ◽  
Chun Y. Seow

It has been shown that airway smooth muscle in vitro is able to maintain active force over a large length range by adaptation in the absence of periodic stimulations at 4°C (Wang L, Paré PD, and Seow CY. J Appl Physiol 90: 734–740, 2001). In this study, we show that such adaptation also takes place at body temperature and that long-term adaptation results in irreversible functional change in the muscle that could lead to airway hyperresponsiveness. Rabbit tracheal muscle explants were passively maintained at shortened and in situ length for 3 and 7–8 days in culture media; the length-tension relationship was then examined. The length associated with maximal force generation decreased by 10.5 ± 3.8% (SE) after 3 days and 37.7 ± 8.5% after 7 or 8 days of passive shortening. At day 3, the left shift in the length-tension curve due to adaptation at short lengths was reversible by readapting the muscle at a longer length. The shift was, however, not completely reversible after 7 days. The results suggest that long-term adaptation of airway smooth muscle could lead to increased muscle stiffness and force-generating ability at short lengths. Under in vivo condition, this could translate into resistance to stretch-induced relaxation and excessive airway narrowing.


2013 ◽  
Vol 32 (3) ◽  
pp. 629-636 ◽  
Author(s):  
XIN ZENG ◽  
YING CHENG ◽  
YUEJUN QU ◽  
JIDE XU ◽  
ZHIYUAN HAN ◽  
...  

1992 ◽  
Vol 70 (4) ◽  
pp. 602-606 ◽  
Author(s):  
Philip Robinson ◽  
Mitsushi Okazawa ◽  
Tony Bai ◽  
Peter Paré

The degree of airway smooth muscle contraction and shortening that occurs in vivo is modified by many factors, including those that influence the degree of muscle activation, the resting muscle length, and the loads against which the muscle contracts. Canine trachealis muscle will shorten up to 70% of starting length from optimal length in vitro but will only shorten by around 30% in vivo. This limitation of shortening may be a result of the muscle shortening against an elastic load such as could be applied by tracheal cartilage. Limitation of airway smooth muscle shortening in smaller airways may be the result of contraction against an elastic load, such as could be applied by lung parenchymal recoil. Measurement of the elastic loads applied by the tracheal cartilage to the trachealis muscle and by lung parenchymal recoil to smooth muscle of smaller airways were performed in canine preparations. In both experiments the calculated elastic loads applied by the cartilage and the parenchymal recoil explained in part the limitation of maximal active shortening and airway narrowing observed. We conclude that the elastic loads provided by surrounding structures are important in determining the degree of airway smooth muscle shortening and the resultant airway narrowing.Key words: elastic loads, tracheal cartilage, airway smooth muscle shortening.


2010 ◽  
Vol 109 (5) ◽  
pp. 1292-1300 ◽  
Author(s):  
Stuart B. Mazzone ◽  
Lina H. K. Lim ◽  
Elizabeth M. Wagner ◽  
Nanako Mori ◽  
Brendan J. Canning

The airways contain a dense subepithelial microvascular plexus that is involved in the supply and clearance of substances to and from the airway wall. We set out to test the hypothesis that airway smooth muscle reactivity to bronchoconstricting agents may be dependent on airway mucosal blood flow. Immunohistochemical staining identified vasoconstrictor and vasodilator nerve fibers associated with subepithelial blood vessels in the guinea pig airways. Intravital microscopy of the tracheal mucosal microvasculature in anesthetized guinea pigs revealed that blockade of α-adrenergic receptors increased baseline arteriole diameter by ∼40%, whereas the α-adrenergic receptor agonist phenylephrine produced a modest (5%) vasoconstriction in excess of the baseline tone. In subsequent in vivo experiments, tracheal contractions evoked by topically applied histamine were significantly reduced ( P < 0.05) and enhanced by α-adrenergic receptor blockade and activation, respectively. α-Adrenergic ligands produced similar significant ( P < 0.05) effects on airway smooth muscle contractions evoked by topically administered capsaicin, intravenously administered neurokinin A, inhaled histamine, and topically administered antigen in sensitized animals. These responses were independent of any direct effect of α-adrenergic ligands on the airway smooth muscle tone. The data suggest that changes in blood flow in the vessels supplying the airways regulate the reactivity of the underlying airway smooth muscle to locally released and exogenously administered agents by regulating their clearance. We speculate that changes in mucosal vascular function or changes in neuronal regulation of the airway vasculature may contribute to airways responsiveness in disease.


2012 ◽  
Vol 90 (1) ◽  
pp. 23-35 ◽  
Author(s):  
Rodrigo J.B. de Siqueira ◽  
Walter B.S. Freire ◽  
Alfredo A. Vasconcelos-Silva ◽  
Patrícia A. Fonseca-Magalhães ◽  
Francisco J.B. Lima ◽  
...  

The present study deals with the pharmacological effects of the sesquiterpene alcohol (–)-α-bisabolol on various smooth-muscle preparations from rats. Under resting tonus, (–)-α-bisabolol (30–300 µmol/L) relaxed duodenal strips, whereas it showed biphasic effects in other preparations, contracting endothelium-intact aortic rings and urinary bladder strips, and relaxing these tissues at higher concentrations (600–1000 µmol/L). In preparations precontracted either electromechanically (by 60 mmol/L K+) or pharmacomechanically (by phenylephrine or carbachol), (–)-α-bisabolol showed only relaxing properties. The pharmacological potency of (–)-α-bisabolol was variable, being higher in mesenteric vessels, whereas it exerted relaxing activity with a lesser potency on tracheal or colonic tissues. In tissues possessing spontaneous activity, (–)-α-bisabolol completely decreased spontaneous contractions in duodenum, whereas it increased their amplitude in urinary bladder tissue. Administered in vivo, (–)-α-bisabolol attenuated the increased responses of carbachol in tracheal rings of ovalbumin-sensitized rats challenged with ovalbumin, but was without effect in the decreased responsiveness of urinary bladder strips in mice treated with ifosfamide. In summary, (–)-α-bisabolol is biologically active in smooth muscle. In some tissues, (–)-α-bisabolol preferentially relaxed contractions induced electromechanically, especially in tracheal smooth muscle. The findings from tracheal rings reveal that (–)-α-bisabolol may be an inhibitor of voltage-dependent Ca2+ channels.


2009 ◽  
Vol 55 (5) ◽  
pp. 418-421
Author(s):  
Rolf G. G. Andersson ◽  
Nils Grundström ◽  
Susan Hedman ◽  
Lars Sörenby ◽  
Jarl E. S. Wikberg

Sign in / Sign up

Export Citation Format

Share Document