scholarly journals A urokinase receptor mRNA binding protein from rabbit lung fibroblasts and mesothelial cells

1998 ◽  
Vol 274 (6) ◽  
pp. L871-L882 ◽  
Author(s):  
Sreerama Shetty ◽  
Steven Idell

The urokinase receptor (uPAR) influences several biological functions relevant to lung injury and repair, including proteolysis, cell migration, and adhesion. In malignant mesothelioma cells, we recently found that a posttranscriptional mechanism involving a cis- transinteraction between a uPAR mRNA sequence and a cytoplasmic uPAR mRNA binding protein (mRNABP) regulates uPAR gene expression (S. Shetty, A. Kumar, and S. Idell. Mol. Cell Biol. 17: 1075–1083, 1997). In this study, we sought to determine if uPAR expression in lung and pleural cells involves a similar posttranscriptional pathway. We first identified and characterized the uPAR mRNABP in rabbit tissues using gel mobility shift, ultraviolet (UV) cross-linking, and RNase protection assays and detected it in liver, heart, brain, spleen, colon, and lung. Phorbol 12-myristate 13-acetate, lipopolysaccharide, transforming growth factor-β, tumor necrosis factor-α, or cycloheximide induced uPAR and uPAR mRNA expression in cultured rabbit pleural mesothelial cells and lung fibroblasts and concurrently reduced the uPAR mRNA-uPAR mRNABP interaction. Using conventional and affinity chromatography, we purified a 50-kDa uPAR mRNABP that selectively binds to a 51-nucleotide fragment of the uPAR coding region. This protein migrates as a monomer when analyzed by SDS-PAGE and UV cross-linking and does not possess intrinsic RNase activity in vitro. A uPAR mRNABP physicochemically and functionally similar to that of human malignant mesothelioma is constitutively expressed in the rabbit lung and other nonneoplastic tissues. In rabbit lung fibroblasts and mesothelial cells, expression of uPAR involves posttranscriptional regulation whereby the uPAR mRNABP appears to interact with a specific coding region cis-element to decrease the stability of uPAR mRNA.

1997 ◽  
Vol 17 (3) ◽  
pp. 1075-1083 ◽  
Author(s):  
S Shetty ◽  
A Kumar ◽  
S Idell

Treatment of human pleural mesothelioma (MS-1) cells with phorbol myristate acetate (PMA) and cycloheximide results in 17- and 10-fold, respectively, increases in steady-state expression of urokinase-type plasminogen activator receptor (uPAR) mRNA. Studies of transcriptional inhibition by actinomycin D showed four- and sixfold extensions of uPAR mRNA half-life in MS-1 cells treated with PMA and cycloheximide, respectively, suggesting that uPAR gene expression involves a posttranscriptional regulatory mechanism. Using gel mobility shift and UV cross-linking assays, we identified a 50-kDa uPAR mRNA binding protein (uPAR mRNABp) that selectively bound to a 51-nucleotide (nt) fragment of mRNA corresponding to the uPAR coding region. We investigated the possibility that this 51-nt protein binding fragment of uPAR mRNA contains regulatory information for message stability. Chimeric beta-globin/uPAR/beta-globin mRNA containing the 51-nt protein binding fragment was able to destabilize otherwise stable beta-globin mRNA. Conversely, a control chimeric beta-globin/uPAR/beta-globin mRNA containing a 51-nt fragment of the uPAR coding region that does not bind uPAR mRNABp was stable under identical conditions. Binding of uPAR mRNABp to uPAR mRNA was abolished after treatment with cycloheximide and rapidly down-regulated by PMA. These data suggest that the 51-nt protein binding fragment of uPAR mRNA may be involved in mRNA turnover as well as in cycloheximide-induced uPAR message stabilization. Our results indicate a novel mechanism of uPAR gene regulation in which cis elements within a 51-nt coding region interact with a uPAR mRNABp to regulate uPAR message stability.


1991 ◽  
Vol 266 (25) ◽  
pp. 16594-16598
Author(s):  
I.J. Rondon ◽  
L.A. MacMillan ◽  
B.S. Beckman ◽  
M.A. Goldberg ◽  
T. Schneider ◽  
...  

2004 ◽  
Vol 75 (5) ◽  
pp. 614-623 ◽  
Author(s):  
M. Maggipinto ◽  
C. Rabiner ◽  
G.J. Kidd ◽  
A.J. Hawkins ◽  
R. Smith ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document