Short-term variability of blood pressure: effects of lower-body negative pressure and long-duration bed rest

2012 ◽  
Vol 303 (1) ◽  
pp. R77-R85 ◽  
Author(s):  
Federico Aletti ◽  
Manuela Ferrario ◽  
Da Xu ◽  
Danielle K. Greaves ◽  
J. Kevin Shoemaker ◽  
...  

Mild lower-body negative pressure (LBNP) has been utilized to selectively unload cardiopulmonary baroreceptors, but there is evidence that arterial baroreceptors can be transiently unloaded after the onset of mild LBNP. In this paper, a black box mathematical model for the prediction of diastolic blood pressure (DBP) variability from multiple inputs (systolic blood pressure, R-R interval duration, and central venous pressure) was applied to interpret the dynamics of blood pressure maintenance under the challenge of LBNP and in long-duration, head-down bed rest (HDBR). Hemodynamic recordings from seven participants in the WISE (Women's International Space Simulation for Exploration) Study collected during an experiment of incremental LBNP (−10 mmHg, −20 mmHg, −30 mmHg) were analyzed before and on day 50 of a 60-day-long HDBR campaign. Autoregressive spectral analysis focused on low-frequency (LF, ∼0.1 Hz) oscillations of DBP, which are related to fluctuations in vascular resistance due to sympathetic and baroreflex regulation of vasomotor tone. The arterial baroreflex-related component explained 49 ± 13% of LF variability of DBP in spontaneous conditions, and 89 ± 9% ( P < 0.05) on day 50 of HDBR, while the cardiopulmonary baroreflex component explained 17 ± 9% and 12 ± 4%, respectively. The arterial baroreflex-related variability was significantly increased in bed rest also for LBNP equal to −20 and −30 mmHg. The proposed technique provided a model interpretation of the proportional effect of arterial baroreflex vs. cardiopulmonary baroreflex-mediated components of blood pressure control and showed that arterial baroreflex was the main player in the mediation of DBP variability. Data during bed rest suggested that cardiopulmonary baroreflex-related effects are blunted and that blood pressure maintenance in the presence of an orthostatic stimulus relies mostly on arterial control.

Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Katrin A Dias ◽  
Christopher M Hearon ◽  
Gautam Babu ◽  
John E Marshall ◽  
James P Macnamara ◽  
...  

Introduction: During space flight and ground based simulations of microgravity, transmural distending pressure increases in resistance vessels above the level of the heart, causing maladaptive vascular remodeling over time. Lower body negative pressure (LBNP) mimics gravity by redistributing blood volume and reinstating hydrostatic gradients, and may preserve vascular structures above the heart while in microgravity. Methods: Ten healthy subjects (5 female, 29 ± 9 years) completed three days of supine (0°) bed rest with and without eight hours of nightly LBNP (-20mmHg) in a randomized, crossover design. Area and volume of the choroid, a highly vascularized layer of the eye sensitive to changes in hydrostatic gradients, were assessed using optical coherence tomography on the first and last day of bed rest. Central venous pressure (CVP) was measured during spontaneous breathing with a peripherally inserted central catheter. Results: CVP increased significantly from the seated to supine position (+9.1 ± 2.4mmHg, P < 0.001), leading to choroid engorgement over three days of supine bed rest (choroid area: +0.09 mm 2 95% CI 0.04 to 0.13, P = 0.0014; choroid volume: +0.37 mm 3 95% CI 0.19 to 0.55, P = 0.0011). Nightly LBNP caused a sustained reduction in supine CVP (5.7 ± 2.2mmHg to 1.2 ± 1.4mmHg, P < 0.001), indicating effective redistribution of blood volume and significantly attenuated the increase in choroid area (3.5% control vs. 0.9% LBNP, P = 0.0164) and volume (3.8% control vs. 1.8% LBNP, P = 0.0040) compared to control (Figure). Conclusions: Nightly LBNP caused caudal redistribution of blood volume that partially reinstated hydrostatic gradients and mitigated the increase in choroid area and volume by 74% and 53%, respectively. These findings illustrate that normalizing transmural distending pressures during simulated microgravity preserves vascularized structures above the level of the heart and may prevent adverse remodeling during long duration spaceflight.


2001 ◽  
Vol 281 (2) ◽  
pp. R468-R475 ◽  
Author(s):  
John S. Floras ◽  
Gary C. Butler ◽  
Shin-Ichi Ando ◽  
Steven C. Brooks ◽  
Michael J. Pollard ◽  
...  

Lower body negative pressure (LBNP; −5 and −15 mmHg) was applied to 14 men (mean age 44 yr) to test the hypothesis that reductions in preload without effect on stroke volume or blood pressure increase selectively muscle sympathetic nerve activity (MSNA), but not the ratio of low- to high-frequency harmonic component of spectral power (PL/PH), a coarse-graining power spectral estimate of sympathetic heart rate (HR) modulation. LBNP at −5 mmHg lowered central venous pressure and had no effect on stroke volume (Doppler) or systolic blood pressure but reduced vagal HR modulation. This latter finding, a manifestation of arterial baroreceptor unloading, refutes the concept that low levels of LBNP interrogate, selectively, cardiopulmonary reflexes. MSNA increased, whereas PL/PH and HR were unchanged. This discordance is consistent with selectivity of efferent sympathetic responses to nonhypotensive LBNP and with unloading of tonically active sympathoexcitatory atrial reflexes in some subjects. Hypotensive LBNP (−15 mmHg) increased MSNA and PL/PH, but there was no correlation between these changes within subjects. Therefore, HR variability has limited utility as an estimate of the magnitude of orthostatic changes in sympathetic discharge to muscle.


1994 ◽  
Vol 77 (1) ◽  
pp. 69-77 ◽  
Author(s):  
R. L. Hughson ◽  
A. Maillet ◽  
C. Gharib ◽  
J. O. Fortrat ◽  
Y. Yamamoto ◽  
...  

Effects of 28 days of continuous 6 degrees head-down tilt bed rest on spontaneous vagally mediated baroreflex response slope were evaluated from beat-by-beat relationships between R-R interval and systolic arterial blood pressure. Twelve healthy men (age 27–42 yr) were assigned to either countermeasure (CM) or no-countermeasure (no-CM) groups. CM consisted of strenuous short-term exercise once per day 6 days/wk from days 7 to 28 and lower body negative pressure (LBNP) for 15 min on days 16, 18, 20, and 22–28. Spontaneous baroreflex slope was evaluated by application of linear regression to sequences of at least three beats in which systolic blood pressure and R-R interval changed in the same direction. Measurements were made pre-, mid- (day 15), and post-bed rest at rest and during progressive LBNP tests (3 min at each of -20, -30, -40, and -50 mmHg). R-R interval decreased progressively and significantly (P < 0.0001) over duration of bed rest. Spontaneous baroreflex slope at rest in pre-bed rest was 18.5 +/- 2.1 ms/mm Hg for CM and 14.9 +/- 1.6 ms/mmHg for no-CM. There was a significant reduction in baroreflex slope as a function of bed rest, and it was further reduced during LBNP (P < 0.0001). Between CM and no-CM groups differences existed, but these were present pre-bed rest and appeared unaffected by countermeasures.(ABSTRACT TRUNCATED AT 250 WORDS)


2001 ◽  
Vol 100 (3) ◽  
pp. 303-309 ◽  
Author(s):  
Duminda N. WIJEYSUNDERA ◽  
Gary C. BUTLER ◽  
Shin-ichi ANDO ◽  
Michael J. POLLARD ◽  
Peter PICTON ◽  
...  

Mechanisms responsible for presyncope during lower body negative pressure (LBNP) in otherwise healthy subjects are poorly understood. Muscle sympathetic nerve activity (MSNA), blood pressure, heart rate (HR), HR power spectra, central venous pressure (CVP) and stroke volume were determined in 14 healthy men subjected to incremental LBNP. Of these, seven experienced presyncope at LBNP >-15 mmHg. Subjects who tolerated LBNP >-15 mmHg had significantly lower CVP (2.6±1.0 versus 7.2±1.2 mmHg; means±S.E.M., P < 0.02), HR (59±2 versus 66±3 beats/min, P < 0.05) and MSNA burst frequency (29.0±2.4 versus 39.0±3.5 bursts/min, P < 0.05) during supine rest. LBNP at -15 mmHg had no effect on blood pressure, but caused similar and significant reductions in stroke volume and cardiac output in both groups. Subjects who tolerated LBNP had significant reflex increases in HR, MSNA burst frequency and burst amplitude with LBNP of -15 mmHg. These responses were absent in those who experienced presyncope. The gain of the cardiac baroreflex regulation of MSNA was markedly attenuated in pre-syncopal subjects (1.2±0.6 versus 8.8±1.4 bursts/100 heart beats per mmHg; P < 0.001). Healthy subjects who experience presyncope in response to LBNP appear more dependent, when supine, upon MSNA to maintain preload, and less able to increase sympathetic vasoconstrictor discharge to skeletal muscle reflexively in response to orthostatic stimuli.


1979 ◽  
Vol 236 (1) ◽  
pp. H42-H47 ◽  
Author(s):  
A. Takeshita ◽  
A. L. Mark ◽  
D. L. Eckberg ◽  
F. M. Abboud

There is considerable evidence that the level of afferent cardiopulmonary receptor activity modulates sinus node responses to arterial baroreflex stimulation in experimental animals. We tested the hypothesis that this reflex interaction occurs also in man by measuring sinus node responses to arterial baroreceptor stimulation with phenylephrine injection or neck suction, before and during changes of central venous pressure provoked by lower body negative pressure or leg and lower trunk elevation. Variations of central venous pressure between 1.1 and 9.0 mmHg did not influence arterial baroreflex mediated bradycardia. Baroreflex sinus node responses were augmented by intravenous propranolol, but the level of responses after propranolol was comparable during the control state, lower body negative pressure, and leg and trunk elevation. Sinus node responses to very brief baroreceptor stimuli applied during the transitions of central venous pressure also were comparable in the three states. We conclude that physiological variations of central venous pressure do not influence sinus node responses to arterial baroreceptor stimulation in man.


2012 ◽  
Vol 113 (10) ◽  
pp. 1604-1612 ◽  
Author(s):  
H. Edgell ◽  
A. Grinberg ◽  
N. Gagné ◽  
K. R. Beavers ◽  
R. L. Hughson

Cardiovascular deconditioning after a 4-h head-down bed rest (HDBR) might be a consequence of the time of day relative to pre-HDBR testing, or simply 4 h of confinement and inactivity rather than the posture change. Ten men and 11 women were studied during lower body negative pressure (LBNP) before and after 4-h HDBR and 4-h seated posture (SEAT) as a control for time of day and physical inactivity effects to test the hypotheses that cardiovascular deconditioning was a consequence of the HDBR posture, and that women would have a greater deconditioning response. Following HDBR, men and women had lower blood volume, higher heart rate with a greater increase during LBNP, a greater decrease of stroke volume during LBNP, lower central venous pressure, smaller inferior vena cava diameter, higher portal vein resistance index with a greater increase during LBNP, but lower forearm vascular resistance, lower norepinephrine, and lower renin. Women had lower vasopressin and men had higher vasopressin after HDBR, and women had lower pelvic impedance and men higher pelvic impedance. Following SEAT, brachial vascular resistance was reduced, thoracic impedance was elevated, the reduction of central venous pressure during LBNP was changed, women had higher angiotensin II whereas men had lower levels, and pelvic impedance increased in women and decreased in men. Cardiovascular deconditioning was greater after 4-h HDBR than after SEAT. Women and men had similar responses for most cardiovascular variables in the present study that tested the responses to LBNP after short-duration HDBR compared with a control condition.


2001 ◽  
Vol 86 (2) ◽  
pp. 559-564 ◽  
Author(s):  
Ichiro Hidaka ◽  
Shin-Ichi Ando ◽  
Hideaki Shigematsu ◽  
Koji Sakai ◽  
Soko Setoguchi ◽  
...  

By injecting noise into the carotid sinus baroreceptors, we previously showed that heart rate (HR) responses to weak oscillatory tilt were enhanced via a mechanism known as “stochastic resonance.” It remains unclear, however, whether the same responses would be observed when using oscillatory lower body negative pressure (LBNP), which would unload the cardiopulmonary baroreceptors with physically negligible effects on the arterial system. Also, the vasomotor sympathetic activity directly controlling peripheral resistance against hypotensive stimuli was not observed. We therefore investigated the effects of weak (0 to approximately −10 mmHg) oscillatory (0.03 Hz) LBNP on HR and muscle sympathetic nerve activity (MSNA) while adding incremental noise to the carotid sinus baroreceptors via a pneumatic neck chamber. The signal-to-noise ratio of HR, cardiac interbeat interval, and total MSNA were all significantly improved by increasing noise intensity, while there was no significant change in the arterial blood pressure in synchronized with the oscillatory LBNP. We conclude that the stochastic resonance, affecting both HR and MSNA, results from the interaction of noise with the signal in the brain stem, where the neuronal inputs from the arterial and cardiopulmonary baroreceptors first come together in the nucleus tractus solitarius. Also, these results indicate that the noise could induce functional improvement in human blood pressure regulatory system in overcoming given hypotensive stimuli.


2009 ◽  
Vol 296 (2) ◽  
pp. H480-H488 ◽  
Author(s):  
Qi Fu ◽  
Shigeki Shibata ◽  
Jeffrey L. Hastings ◽  
Anand Prasad ◽  
M. Dean Palmer ◽  
...  

Low levels (i.e., ≤20 mmHg) of lower body negative pressure (LBNP) have been utilized to unload “selectively” cardiopulmonary baroreceptors in humans, since steady-state mean arterial pressure and heart rate (HR) have been found unchanged at such levels. However, transient reductions in blood pressure (BP), followed by reflex compensation, may occur without detection, which could unload arterial baroreceptors. The purposes of this study were to test the hypothesis that the arterial baroreflex is engaged even during low levels of LBNP and to determine the time course of changes in hemodynamics. Fourteen healthy individuals (age range 20–54 yr) were studied. BP (Portapres and Suntech), HR (ECG), pulmonary capillary wedge pressure (PCWP) or pulmonary artery diastolic pressure (PDP) and right atrial pressure (RAP) (Swan-Ganz catheter) and hemodynamics (Modelflow) were recorded continuously at baseline and −15- and −30-mmHg LBNP for 6 min each. Application of −15-mmHg LBNP resulted in rapid and sustained falls in RAP and PCWP or PDP, progressive decreases in cardiac output and stroke volume, followed subsequently by transient reductions in both systolic and diastolic BP, which were then restored through the arterial baroreflex feedback mechanism after ∼15 heartbeats. Additional studies were performed in five subjects using even lower levels of LBNP, and this transient reduction in BP was observed in three at −5- and in all at −10-mmHg LBNP. The delay for left ventricular stroke volume to fall at −15-mmHg LBNP was about 10 cardiac cycles. An increase in systemic vascular resistance was detectable after 20 heartbeats during −15-mmHg LBNP. Steady-state BP and HR remained unchanged during mild LBNP. However, BP decreased, while HR increased, at −30-mmHg LBNP. These results suggest that arterial baroreceptors are consistently unloaded during low levels (i.e., −10 and −15 mmHg) of LBNP in humans. Thus “selective” unloading of cardiopulmonary baroreceptors cannot be presumed to occur during these levels of mild LBNP.


1993 ◽  
Vol 264 (5) ◽  
pp. R1024-R1030 ◽  
Author(s):  
P. Norsk ◽  
P. Ellegaard ◽  
R. Videbaek ◽  
C. Stadeager ◽  
F. Jessen ◽  
...  

The hypothesis was tested that narrowing of arterial pulse pressure (PP) is a determinant of arginine vasopressin (AVP) release in humans. Six normal males completed a two-step lower body negative pressure (LBNP) protocol of -20 and -50 mmHg, respectively, for 10 min each. None of these subjects experienced presyncopal symptoms. Arterial plasma AVP and plasma renin activity (PRA) (at 2-min intervals) only increased subsequent to a decrease in PP (invasive brachial arterial measurements) and stroke volume (ultrasound Doppler technique, n = 4). Simultaneously, mean arterial pressure did not change. A selective decrease in central venous pressure and left atrial diameter (echocardiography, n = 4) at LBNP of -20 mmHg did not affect AVP or PRA, whereas arterial plasma norepinephrine increased (n = 4). During LBNP, significant (P < 0.05) intraindividual linear correlations were observed between log(AVP) and PP in four of the subjects with r values from -0.75 to -0.99 and between log(PRA) and PP in all six subjects with r values from -0.89 to -0.98. In conclusion, these results are in compliance with the hypothesis that narrowing of PP in humans during central hypovolemia is a determinant of AVP and renin release.


Sign in / Sign up

Export Citation Format

Share Document