Spontaneous sleep and homeostatic sleep regulation in ghrelin knockout mice

2007 ◽  
Vol 293 (1) ◽  
pp. R510-R517 ◽  
Author(s):  
Éva Szentirmai ◽  
Levente Kapás ◽  
Yuxiang Sun ◽  
Roy G. Smith ◽  
James M. Krueger

Ghrelin is well known for its feeding and growth hormone-releasing actions. It may also be involved in sleep regulation; intracerebroventricular administration and hypothalamic microinjections of ghrelin stimulate wakefulness in rats. Hypothalamic ghrelin, together with neuropeptide Y and orexin form a food intake-regulatory circuit. We hypothesized that this circuit also promotes arousal. To further investigate the role of ghrelin in the regulation of sleep-wakefulness, we characterized spontaneous and homeostatic sleep regulation in ghrelin knockout (KO) and wild-type (WT) mice. Both groups of mice exhibited similar diurnal rhythms with more sleep and less wakefulness during the light period. In ghrelin KO mice, spontaneous wakefulness and rapid-eye-movement sleep (REMS) were slightly elevated, and non-rapid-eye-movement sleep (NREMS) was reduced. KO mice had more fragmented NREMS than WT mice, as indicated by the shorter and greater number of NREMS episodes. Six hours of sleep deprivation induced rebound increases in NREMS and REMS and biphasic changes in electroencephalographic slow-wave activity (EEG SWA) in both genotypes. Ghrelin KO mice recovered from NREMS and REMS loss faster, and the delayed reduction in EEG SWA, occurring after sleep loss-enhanced increases in EEG SWA, was shorter-lasting compared with WT mice. These findings suggest that the basic sleep-wake regulatory mechanisms in ghrelin KO mice are not impaired and they are able to mount adequate rebound sleep in response to a homeostatic challenge. It is possible that redundancy in the arousal systems of the brain or activation of compensatory mechanisms during development allow for normal sleep-wake regulation in ghrelin KO mice.

2002 ◽  
Vol 282 (1) ◽  
pp. R70-R76 ◽  
Author(s):  
I. Hajdu ◽  
F. Obal ◽  
J. Fang ◽  
J. M. Krueger ◽  
C. D. Rollo

The effects of chronic excess of growth hormone (GH) on sleep-wake activity was determined in giant transgenic mice in which the metallothionein-1 promoter stimulates the expression of rat GH (MT-rGH mice) and in their normal littermates. In the MT-rGH mice, the time spent in spontaneous non-rapid eye movement sleep (NREMS) was enhanced moderately, and rapid eye movement sleep (REMS) time increased greatly during the light period. After a 12-h sleep deprivation, the MT-rGH mice continued to sleep more than the normal mice, but there were no differences in the increments in NREMS, REMS, and electroencephalogram (EEG) slow-wave activity (SWA) during NREMS between the two groups. Injection of the somatostatin analog octreotide elicited a prompt sleep suppression followed by increases in SWA during NREMS in normal mice. These changes were attenuated in the MT-rGH mice. The decreased responsiveness to octreotide is explained by a chronic suppression of hypothalamic GH-releasing hormone in the MT-rGH mice. Enhancements in spontaneous REMS are attributed to the REMS-promoting activity of GH. The increases in spontaneous NREMS are, however, not consistent with our current understanding of the role of somatotropic hormones in sleep regulation. Metabolic, neurotransmitter, or hormonal changes associated with chronic GH excess may indirectly influence sleep.


2021 ◽  
Author(s):  
Di Wang ◽  
Qingchen Guo ◽  
Yu Zhou ◽  
Zheng Xu ◽  
Su-Wan Hu ◽  
...  

Background The γ-aminobutyric acid–mediated (GABAergic) inhibitory system in the brain is critical for regulation of sleep–wake and general anesthesia. The lateral septum contains mainly GABAergic neurons, being cytoarchitectonically divided into the dorsal, intermediate, and ventral parts. This study hypothesized that GABAergic neurons of the lateral septum participate in the control of wakefulness and promote recovery from anesthesia. Methods By employing fiber photometry, chemogenetic and optogenetic neuronal manipulations, anterograde tracing, in vivo electrophysiology, and electroencephalogram/electromyography recordings in adult male mice, the authors measured the role of lateral septum GABAergic neurons to the control of sleep–wake transition and anesthesia emergence and the corresponding neuron circuits in arousal and emergence control. Results The GABAergic neurons of the lateral septum exhibited high activities during the awake state by in vivo fiber photometry recordings (awake vs. non–rapid eye movement sleep: 3.3 ± 1.4% vs. –1.3 ± 1.2%, P < 0.001, n = 7 mice/group; awake vs. anesthesia: 2.6 ± 1.2% vs. –1.3 ± 0.8%, P < 0.001, n = 7 mice/group). Using chemogenetic stimulation of lateral septum GABAergic neurons resulted in a 100.5% increase in wakefulness and a 51.2% reduction in non–rapid eye movement sleep. Optogenetic activation of these GABAergic neurons promoted wakefulness from sleep (median [25th, 75th percentiles]: 153.0 [115.9, 179.7] s to 4.0 [3.4, 4.6] s, P = 0.009, n = 5 mice/group) and accelerated emergence from isoflurane anesthesia (514.4 ± 122.2 s vs. 226.5 ± 53.3 s, P < 0.001, n = 8 mice/group). Furthermore, the authors demonstrated that the lateral septum GABAergic neurons send 70.7% (228 of 323 cells) of monosynaptic projections to the ventral tegmental area GABAergic neurons, preferentially inhibiting their activities and thus regulating wakefulness and isoflurane anesthesia depth. Conclusions The results uncover a fundamental role of the lateral septum GABAergic neurons and their circuit in maintaining awake state and promoting general anesthesia emergence time. Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New


2004 ◽  
Vol 97 (1) ◽  
pp. 17-28 ◽  
Author(s):  
Lichao Chen ◽  
Deborah Duricka ◽  
Scott Nelson ◽  
Sanjib Mukherjee ◽  
Stewart G. Bohnet ◽  
...  

Influenza viral infection induces increases in non-rapid eye movement sleep and decreases in rapid eye movement sleep in normal mice. An array of cytokines is produced during the infection, and some of them, such as IL-1β and TNF-α, are well-defined somnogenic substances. It is suggested that nitric oxide (NO) may mediate the sleep-promoting effects of these cytokines. In this study, we use mice with targeted disruptions of either the neuronal NO synthase (nNOS) or the inducible NO synthase (iNOS) gene, commonly referred to as nNOS or iNOS knockouts (KOs), to investigate sleep changes after influenza viral challenge. We report that the magnitude of viral-induced non-rapid eye movement sleep responses in both nNOS KOs and iNOS KOs was less than that of their respective controls. In addition, the duration of rapid eye movement sleep in nNOS KO mice did not decrease compared with baseline values. All strains of mice had similar viral titers and cytokine gene expression profiles in the lungs. Virus was not isolated from the brains of any strain. However, gene expression in the brain stem differed between nNOS KOs and their controls: mRNA for the interferon-induced gene 2′,5′-oligoadenylate synthase 1a was elevated in nNOS KOs relative to their controls at 15 h, and IL-1β mRNA was elevated in nNOS KOs relative to their controls at 48 h. Our results suggest that NO synthesized by both nNOS and iNOS plays a role in virus-induced sleep changes and that nNOS may modulate cytokine expression in the brain.


2003 ◽  
Vol 285 (1) ◽  
pp. R99-R109 ◽  
Author(s):  
Hitoshi Yoshida ◽  
Takeshi Kubota ◽  
James M. Krueger

Sleep is regulated in part by the brain cytokine network, including tumor necrosis factor-α (TNF-α). TNF-α activates the transcription factor nuclear factor-κB, which in turn promotes transcription of many genes, including cyclooxygenase-2 (COX-2). COX-2 is in the brain and is an enzyme responsible for production of prostaglandin D2. The hypothesis that central COX-2 plays a role in the regulation of spontaneous and TNF-α-induced sleep was investigated. Three doses (0.5, 5, and 50 μg) of NS-398, a highly selective COX-2 inhibitor, were injected intracerebroventricularly. The highest dose decreased non-rapid eye movement sleep. The intermediate and highest doses decreased electroencephalographic slow-wave activity; the greatest reduction occurred after 50 μg of NS-398 during the first 3-h postinjection period. Rapid eye movement sleep and brain temperature were not altered by any dose of NS-398. Pretreatment of rabbits with 5 or 50 μg of NS-398 blocked the TNF-α-induced increases in non-rapid eye movement sleep, electroencephalographic slow-wave activity, and brain temperature. These data suggest that COX-2 is involved in the regulation of spontaneous and TNF-α-induced sleep.


2020 ◽  
Vol 10 (6) ◽  
pp. 343 ◽  
Author(s):  
Serena Scarpelli ◽  
Aurora D’Atri ◽  
Chiara Bartolacci ◽  
Maurizio Gorgoni ◽  
Anastasia Mangiaruga ◽  
...  

Several findings support the activation hypothesis, positing that cortical arousal promotes dream recall (DR). However, most studies have been carried out on young participants, while the electrophysiological (EEG) correlates of DR in older people are still mostly unknown. We aimed to test the activation hypothesis on 20 elders, focusing on the Non-Rapid Eye Movement (NREM) sleep stage. All the subjects underwent polysomnography, and a dream report was collected upon their awakening from NREM sleep. Nine subjects were recallers (RECs) and 11 were non-RECs (NRECs). The delta and beta EEG activity of the last 5 min and the total NREM sleep was calculated by Fast Fourier Transform. Statistical comparisons (RECs vs. NRECs) revealed no differences in the last 5 min of sleep. Significant differences were found in the total NREM sleep: the RECs showed lower delta power over the parietal areas than the NRECs. Consistently, statistical comparisons on the activation index (delta/beta power) revealed that RECs showed a higher level of arousal in the fronto-temporal and parieto-occipital regions than NRECs. Both visual vividness and dream length are positively related to the level of activation. Overall, our results are consistent with the view that dreaming and the storage of oneiric contents depend on the level of arousal during sleep, highlighting a crucial role of the temporo-parietal-occipital zone.


Sign in / Sign up

Export Citation Format

Share Document