scholarly journals Maternal vasodilation in pregnancy: the emerging role of relaxin

2011 ◽  
Vol 301 (2) ◽  
pp. R267-R275 ◽  
Author(s):  
Kirk P. Conrad

Pregnancy is a unique physiological condition of profound maternal renal and systemic vasodilation. Our goal has been to unveil the reproductive hormones mediating this remarkable vasodilatory state and the underlying molecular mechanisms. In addition to advancing our knowledge of pregnancy physiology, reaching this goal may translate into therapeutics for pregnancy pathologies such as preeclampsia and for diseases associated with vasoconstriction and arterial stiffness in nonpregnant women and men. An emerging player is the 6 kDa corpus luteal hormone relaxin, which circulates during pregnancy. Relaxin administration to rats and humans induces systemic and renal vasodilation regardless of sex, thus mimicking the pregnant condition. Immunoneutralization or elimination of the source of circulating relaxin prevents renal and systemic vasodilation in midterm pregnant rats. Infertile women who become pregnant by donor eggs (IVF with embryo transfer) lack a corpus luteum and circulating relaxin, and they show a markedly subdued gestational increase in glomerular filtration rate. These data implicate relaxin as one of the vasodilatory reproductive hormones of pregnancy. There are different molecular mechanisms underlying the so-called rapid and sustained vasodilatory actions of relaxin. The former is mediated by Gαi/o protein coupling to phosphatidylinositol-3 kinase/Akt (protein kinase B)-dependent phosphorylation and activation of endothelial nitric oxide synthase, the latter by vascular endothelial and placental growth factors, and increases in arterial gelatinase(s) activity. The gelatinases, in turn, hydrolyze big endothelin (ET) at a gly-leu bond to form ET1–32, which activates the endothelial ETB receptor/nitric oxide vasodilatory pathway.

2007 ◽  
Vol 293 (3) ◽  
pp. H1918-H1928 ◽  
Author(s):  
Ramanna Merla ◽  
Yumei Ye ◽  
Yu Lin ◽  
Saraswathy Manickavasagam ◽  
Ming-He Huang ◽  
...  

Statins activate phosphatidylinositol-3-kinase, which activates ecto-5′-nucleotidase and phosphorylates 3-phosphoinositide-dependent kinase-1 (PDK-1). Phosphorylated (P-)PDK-1 phosphorylates Akt, which phosphorylates endothelial nitric oxide synthase (eNOS). We asked if the blockade of adenosine receptors (A1, A2A, A2B, or A3 receptors) could attenuate the induction of Akt and eNOS by atorvastatin (ATV) and whether ERK1/2 is involved in the ATV regulation of Akt and eNOS. In protocol 1, mice received intraperitoneal ATV, theophylline (TH), ATV + TH, or vehicle. In protocol 2, mice received intraperitoneal injections of ATV, U0126 (an ERK1/2 inhibitor), ATV + U0126, or vehicle; 8 h later, hearts were assessed by immunoblot analysis. In protocol 3, mice received intraperitoneal ATV alone or with 8-sulfophenyltheophylline (SPT); 1, 3, and 6 h after injection, hearts were assessed by immunoblot analysis. In protocol 4, mice received intraperitoneal ATV alone or with SPT, 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), 1,3,7-trimethyl-8-(3-chlorostyryl)xanthine (CSC), alloxazine, or MRS-1523; 3 h after injection, hearts were assessed by immunoblot analysis. ATV increased P-ERK, P-PDK-1, Ser473 P-Akt, Thr308 P-Akt, and P-eNOS levels. TH blocked ATV-induced increases in P-ERK, Ser473 P-Akt, Thr308 P-Akt, and P-eNOS levels without affecting the induction of P-PDK-1 by ATV. U0126 blocked the ATV induction of Ser473 P-Akt and Thr308 P-Akt while attenuating the induction of P-eNOS. A detectable increase in P-ERK, Ser473 P-Akt and P-eNOS was seen 3 and 6 h after injection but not at 1 h. DPCPX, CSC, and alloxazine partially blocked the ATV induction of P-ERK, Ser473 P-Akt, and P-eNOS. In conclusion, blockade of adenosine A1, A2A, and A2B receptors but not A3 receptors inhibited the induction of Akt and eNOS by statins. Adenosine was required for ERK1/2 activation by statins, which resulted in Akt and eNOS phosphorylation.


2018 ◽  
Vol 16 (2) ◽  
pp. 194-199
Author(s):  
Wioletta Ratajczak-Wrona ◽  
Ewa Jablonska

Background: Polymorphonuclear neutrophils (PMNs) play a crucial role in the innate immune system’s response to microbial pathogens through the release of reactive nitrogen species, including Nitric Oxide (NO). </P><P> Methods: In neutrophils, NO is produced by the inducible Nitric Oxide Synthase (iNOS), which is regulated by various signaling pathways and transcription factors. N-nitrosodimethylamine (NDMA), a potential human carcinogen, affects immune cells. NDMA plays a major part in the growing incidence of cancers. Thanks to the increasing knowledge on the toxicological role of NDMA, the environmental factors that condition the exposure to this compound, especially its precursors- nitrates arouse wide concern. Results: In this article, we present a detailed summary of the molecular mechanisms of NDMA’s effect on the iNOS-dependent NO production in human neutrophils. Conclusion: This research contributes to a more complete understanding of the mechanisms that explain the changes that occur during nonspecific cellular responses to NDMA toxicity.


Sign in / Sign up

Export Citation Format

Share Document