Electrical stimulation of the aortic depressor nerve in conscious rats overcomes the attenuation of the baroreflex in chronic heart failure

2016 ◽  
Vol 310 (7) ◽  
pp. R612-R618 ◽  
Author(s):  
Tomás O. C. Teixeira Pinto ◽  
Renata M. Lataro ◽  
Jaci A. Castania ◽  
Marina T. Durand ◽  
Carlos A. A. Silva ◽  
...  

Chronic heart failure (CHF) is characterized by autonomic dysfunction combined with baroreflex attenuation. The hypotensive and bradycardic responses produced by electrical stimulation of the aortic depressor nerve (ADN) were examined in conscious CHF and control male Wistar rats (12–13 wk old). Furthermore, the role of parasympathetic and sympathetic nervous system in mediating the cardiovascular responses to baroreflex activation was evaluated by selective β1-adrenergic and muscarinic receptor antagonists. CHF was induced by myocardial infarction. After 6 wk, the subjects were implanted with electrodes for ADN stimulation. Twenty-four hours later, electrical stimulation of the ADN was applied for 20 s using five different frequencies (5, 15, 30, 60, and 90 Hz), while the arterial pressure was recorded by a catheter implanted into the femoral artery. Electrical stimulation of the ADN elicited progressive and similar hypotensive and bradycardic responses in control ( n = 12) and CHF ( n = 11) rats, while the hypotensive response was not affected by methylatropine. Nevertheless, the reflex bradycardia was attenuated by methylatropine in control, but not in CHF rats. Atenolol did not affect the hypotensive or bradycardic response in either group. The ADN function was examined under anesthesia through electroneurographic recordings. The arterial pressure-ADN activity relationship was attenuated in CHF rats. In conclusion, despite the attenuation of baroreceptor function in CHF rats, the electrical stimulation of the ADN elicited a stimulus-dependent hypotension and bradycardia of similar magnitude as observed in control rats. Therefore, electrical activation of the aortic baroreflex overcomes both the attenuation of parasympathetic function and the sympathetic overdrive.

1989 ◽  
Vol 257 (2) ◽  
pp. R405-R409
Author(s):  
D. J. McKitrick ◽  
F. R. Calaresu

As microinjection of atrial natriuretic factor (ANF) into the nucleus of the solitary tract (NTS) has been shown to elicit depressor responses [D. J. McKitrick and F. R. Calaresu. Am. J. Physiol. 255 (Regulatory Integrative Comp. Physiol. 24): R182-R187, 1988], we investigated the possibility that these responses might be facilitated either by electrical stimulation of arterial baroreceptor fibers in the aortic depressor nerve (ADN) or by simultaneous microinjection of L-glutamate (Glu) into the same sites in the NTS. Male Wistar rats (n = 51) were anesthetized with urethan (1.4 g/kg ip), artificially ventilated, and the dorsal medulla was exposed. The ADN was isolated, cut distally, and the central end was placed on bipolar stimulating electrodes. Threshold doses of 10(-7) M ANF microinjected into the NTS were combined with threshold electrical stimulation of the ADN (n = 37) or threshold doses of 0.13-0.5 M Glu (n = 14) microinjected into the NTS. There was a significant interaction between ANF microinjection and ADN stimulation in producing changes in mean arterial pressure (MAP) and heart rate [HR; P less than 0.05; -20.2 +/- 2.3 (SE) mmHg and -30.8 +/- 6.9 (SE) beats/min, respectively; n = 18]. There was also a significant interaction between ANF and Glu in producing changes in MAP and HR [P less than 0.05; -16.3 +/- 1.8 (SE) mmHg and -15.0 +/- 3.0 (SE) beats/min, respectively; n = 8]. These results indicate that ANF influences neurons in the NTS, which are also influenced by activation of arterial baroreceptors, and ANF and Glu interact in the NTS to produce facilitated cardiovascular responses.


1985 ◽  
Vol 63 (9) ◽  
pp. 1122-1132 ◽  
Author(s):  
J. A. Armour ◽  
W. C. Randall

Electrical stimulation of a canine vagosympathetic complex or a cardiopulmonary nerve can elicit a variety of negative chronotropic and inotropic cardiac responses, with or without alterations in systemic arterial pressure. In the period immediately following cessation of such a stimulation "rebound" tachycardia, increased inotropism above control values in one or more regions of the heart, and (or) elevation in systemic arterial pressure can occur. These "rebound" phenomena are abolished by propranolol or ipsilateral chronic sympathectomy. It is proposed that "vagal" poststimulation "rebound" of the canine cardiovascular system is primarily the result of activation of sympathetic neural elements present in the vagosympathetic complexes or cardiopulmonary nerves.


2010 ◽  
Vol 15 (6) ◽  
pp. 563-579 ◽  
Author(s):  
Apostolos Karavidas ◽  
Sophia M. Arapi ◽  
Vlassios Pyrgakis ◽  
Stamatis Adamopoulos

1985 ◽  
Vol 63 (7) ◽  
pp. 816-824 ◽  
Author(s):  
Michael B. Gutman ◽  
John Ciriello ◽  
Gordon J. Mogenson

It has recently been reported that stimulation of the region of the subfornical organ (SFO) elicits an increase in arterial pressure. However, the mechanisms and forebrain neural circuitry that are involved in this cardiovascular response have not been elucidated. The present study was done in urethane-anaesthetized rats to determine whether selective activation of SFO neurons elicit cardiovascular responses and whether these responses were mediated by a pathway involving the paraventricular nucleus of the hypothalamus (PVH). Stimulation sites which required the lowest threshold current (30 μA) to elicit a pressor response and at which the largest rise in mean arterial pressure (MAP; 22 ± 2 mmHg) was elicited at a constant current intensity (150 μA) were histologically localized in the region of the SFO. Short (mean peak latency; 4 ± 2 s) and long (mean peak latency; 61 ± 8 s) latency increases in MAP were observed during and after electrical stimulation of the SFO, respectively. Cardiac slowing accompanied the short latency pressor response and cardioacceleration was observed in most (57%) of the cases to accompany the late pressor response. Microinjection of L-glutamate into the SFO consistently elicited cardiovascular responses qualitatively similar to those observed during electrical stimulation. Ganglionic blockade abolished the short latency increase in MAP and the accompanying bradycardia. However, the long latency pressor and cardioacceleratory responses were not altered by ganglionic blockade and adrenalectomy. Selective bilateral electrolytic or kainic acid lesions of the region of the PVH significantly attenuated the cardiovascular responses elicited by stimulation of the SFO. These data suggest that activation of neurons in the SFO elicit cardiovascular responses partially mediated by sympathetic outflow through a neural pathway involving the PVH.


1999 ◽  
Vol 276 (1) ◽  
pp. H242-H247 ◽  
Author(s):  
John Ciriello ◽  
Stefanie Roder

GABAergic inputs have been demonstrated in the central nucleus of the amygdala (ACe). However, the contribution of these inhibitory inputs to the cardiovascular responses elicited from the ACe is not known. Experiments were done in chloralose-anesthetized, paralyzed, and artificially ventilated male Wistar rats to investigate the effects of microinjections of GABA, the selective GABAA-receptor antagonist bicuculline, or the GABAB-receptor antagonist phaclofen, in the ACe on the mean arterial pressure (MAP) and heart rate (HR) responses elicited byl-glutamate (Glu) stimulation of the ACe. Microinjections of Glu in the ACe elicited decreases in MAP (−13.7 ± 1.6 mmHg) and HR (−5.3 ± 1.9 beats/min). The MAP and HR responses elicited by Glu stimulation of the ACe were significantly reduced (89%) by the prior microinjection of GABA in the same ACe site. In addition, at some sites in the ACe at which microinjection of Glu did not elicit depressor responses, Glu injections in the presence of phaclofen elicited decreases in MAP (−9.5 ± 1.0 mmHg) and variable changes in HR. On the other hand, the magnitude of the depressor responses elicited during stimulation of the ACe site in the presence of bicuculline was significantly attenuated (60%), whereas phaclofen had no effect on the magnitude of the depressor responses elicited by Glu stimulation of the ACe. These data suggest that GABAergic mechanisms in the ACe alter the excitability of ACe neurons involved in mediating changes in systemic arterial pressure and HR.


2019 ◽  
Vol 316 (4) ◽  
pp. H862-H872 ◽  
Author(s):  
Ryan J. Adam ◽  
Zhiqiu Xia ◽  
Kristina Pravoverov ◽  
Juan Hong ◽  
Adam J. Case ◽  
...  

Excessive sympathoexcitation characterizes the chronic heart failure (CHF) state. An exaggerated cardiac sympathetic afferent reflex (CSAR) contributes to this sympathoexcitation. Prior studies have demonstrated that the CSAR to capsaicin [transient receptor potential (TRP) vanilloid 1 agonist] is exaggerated in CHF animal models. We recently discovered that capsaicin application to the lung visceral pleura in anesthetized, vagotomized, open-chested rats increases mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA). We named this response the pulmonary spinal afferent reflex (PSAR). Due to the similarities between TRP vanilloid 1 and TRP ankyrin 1 (TRPA1) channels as well as the excessive sympathoexcitation of CHF, we hypothesized that stimulation of the CSAR and PSAR with a specific TRPA1 agonist would result in an augmented response in CHF rats (coronary ligation model) compared with sham control rats. In response to a TRPA1 agonist, both CSAR and PSAR in sham rats resulted in biphasic changes in MAP and increases in HR and RSNA 10–12 wk postmyocardial infarction (post-MI). These effects were blunted in CHF rats. Assessment of TRPA1 expression levels in cardiopulmonary spinal afferents by immunofluorescence, quantitative RT-PCR, and Western blot analysis 10–12 wk post-MI all indicates reduced expression in CHF rats but no reduction at earlier time points. TRPA1 protein was reduced in a dorsal root ganglia cell culture model of inflammation and simulated tissue ischemia, raising the possibility that the in vivo reduction of TRPA1 expression was, in part, caused by CHF-related tissue ischemia and inflammation. These data provide evidence that reflex responses to cardiopulmonary spinal afferent TRPA1 stimulation may be attenuated in CHF rather than enhanced.NEW & NOTEWORTHY Excessive sympathoexcitation characterizes chronic heart failure (CHF). The contribution of transient receptor potential ankyrin 1 (TRPA1) channel-mediated reflexes to this sympathoexcitation is unknown. We found that application of TRPA1 agonist to the heart and lung surface resulted in increased heart rate and sympathetic output and a biphasic change in mean arterial pressure in control rats. These effects were attenuated in CHF rats, decreasing the likelihood that TRPA1 channels contribute to cardiopulmonary afferent sensitization in CHF.


Sign in / Sign up

Export Citation Format

Share Document