Divergent roles of plasma osmolality and the baroreflex on sweating and skin blood flow

2012 ◽  
Vol 302 (5) ◽  
pp. R634-R642 ◽  
Author(s):  
Aaron G. Lynn ◽  
Daniel Gagnon ◽  
Konrad Binder ◽  
Robert C. Boushel ◽  
Glen P. Kenny

Plasma hyperosmolality and baroreceptor unloading have been shown to independently influence the heat loss responses of sweating and cutaneous vasodilation. However, their combined effects remain unresolved. On four separate occasions, eight males were passively heated with a liquid-conditioned suit to 1.0°C above baseline core temperature during a resting isosmotic state (infusion of 0.9% NaCl saline) with (LBNP) and without (CON) application of lower-body negative pressure (−40 cmH2O) and during a hyperosmotic state (infusion of 3.0% NaCl saline) with (LBNP + HYP) and without (HYP) application of lower-body negative pressure. Forearm sweat rate (ventilated capsule) and skin blood flow (laser-Doppler), as well as core (esophageal) and mean skin temperatures, were measured continuously. Plasma osmolality increased by ∼10 mosmol/kgH2O during HYP and HYP + LBNP conditions, whereas it remained unchanged during CON and LBNP ( P ≤ 0.05). The change in mean body temperature (0.8 × core temperature + 0.2 × mean skin temperature) at the onset threshold for increases in cutaneous vascular conductance (CVC) was significantly greater during LBNP (0.56 ± 0.24°C) and HYP (0.69 ± 0.36°C) conditions compared with CON (0.28 ± 0.23°C, P ≤ 0.05). Additionally, the onset threshold for CVC during LBNP + HYP (0.88 ± 0.33°C) was significantly greater than CON and LBNP conditions ( P ≤ 0.05). In contrast, onset thresholds for sweating were not different during LBNP (0.50 ± 0.18°C) compared with CON (0.46 ± 0.26°C, P = 0.950) but were elevated ( P ≤ 0.05) similarly during HYP (0.91 ± 0.37°C) and LBNP + HYP (0.94 ± 0.40°C). Our findings show an additive effect of hyperosmolality and baroreceptor unloading on the onset threshold for increases in CVC during whole body heat stress. In contrast, the onset threshold for sweating during heat stress was only elevated by hyperosmolality with no effect of the baroreflex.

1990 ◽  
Vol 68 (3) ◽  
pp. 1004-1009 ◽  
Author(s):  
M. J. Joyner ◽  
J. T. Shepherd ◽  
D. R. Seals

The purpose of this study was to determine whether prolonged unloading of cardiopulmonary baroreceptors with lower body negative pressure (LBNP) causes constant increases in sympathetic outflow to skeletal muscles. Eight healthy subjects underwent a 20-min control period followed by 20 min of 15-mmHg LBNP. This pressure was selected because it did not cause any significant change in mean arterial blood pressure (sphygmomanometry) or heart rate, suggesting that the cardiopulmonary baroreceptors were selectively unloaded and the activity of the arterial baroreceptors was unchanged. Muscle sympathetic nerve activity in the peroneal nerve (MSNA, microneurography) increased from an average of 21.8 +/- 1.7 bursts/min over the last 5 min of control to 29.0 +/- 2.9 bursts/min during the 1st min of LBNP (P less than 0.05 LBNP vs. control). The increase in MSNA observed during the 1st min was sustained throughout LBNP. Forelimb blood flow (plethysmography) decreased abruptly at the onset of the LBNP from a control value of 4.3 +/- 0.5 ml.min-1.100 ml-1 to 2.5 +/- 0.2 at the 1st min; the flow then increased and remained significantly above this value, but below the control value, throughout LBNP. Similar blood flow findings were obtained in additional studies, when the hand circulation was excluded during the flow measurements. Forearm skin blood flow (laser Doppler) also decreased abruptly at the onset of LBNP and was followed by partial recovery, but these changes were too small to account for all the increases in limb blood flow over the course of LBNP.(ABSTRACT TRUNCATED AT 250 WORDS)


2004 ◽  
Vol 96 (6) ◽  
pp. 2153-2160 ◽  
Author(s):  
Donald E. Watenpaugh ◽  
Gregory A. Breit ◽  
Theresa M. Buckley ◽  
Richard E. Ballard ◽  
Gita Murthy ◽  
...  

We hypothesized that gravitational stimuli elicit cardiovascular responses in the following order with gravitational stress equalized at the level of the feet, from lowest to highest response: short-(SAC) and long-arm centrifugation (LAC), tilt, and lower body negative pressure (LBNP). Up to 15 healthy subjects underwent graded application of the four stimuli. Laser-Doppler flowmetry measured regional skin blood flow. At 0.6 Gz (60 mmHg LBNP), tilt and LBNP similarly reduced leg skin blood flow to ∼36% of supine baseline levels. Flow increased back toward baseline levels at 80–100 mmHg LBNP yet remained stable during 0.8–1.0 Gz tilt. Centrifugation usually produced less leg vasoconstriction than tilt or LBNP. Surprisingly, SAC and LAC did not differ significantly. Thigh responses were less definitive than leg responses. No gravitational vasoconstriction occurred in the neck. All conditions except SAC increased heart rate, according to our hypothesized order. LBNP may be a more effective and practical means of simulating cardiovascular effects of gravity than centrifugation.


1990 ◽  
Vol 78 (4) ◽  
pp. 399-401 ◽  
Author(s):  
M. J. Cullen ◽  
J. R. Cockcroft ◽  
D. J. Webb

1. Six healthy male subjects received 0.9% (w/v) NaCl (saline) followed by incremental doses of bradykinin (1, 3 and 10 pmol/min), via the left brachial artery. Blood flow and the response of blood flow to lower-body negative pressure were measured in both forearms during infusion of saline and each dose of bradykinin. 2. Bradykinin produced a moderate and dose-dependent increase in blood flow in the infused, but not the non-infused, forearm. Lower-body negative pressure produced an approximately 15–20% reduction in blood flow in both forearms, and this response was unaffected by local infusion of bradykinin. 3. Bradykinin, in contrast to angiotensin II, had no acute effect on peripheral sympathetic responses to lower-body negative pressure. We conclude that, in forearm resistance vessels in man, withdrawal of angiotensin II, rather than accumulation of bradykinin, is likely to account for the attenuation of peripheral sympathetic responses after acute administration of a converting-enzyme inhibitor.


1976 ◽  
Vol 41 (6) ◽  
pp. 826-831 ◽  
Author(s):  
J. M. Johnson ◽  
G. L. Brengelmann ◽  
L. B. Rowell

A three-part experiment was designed to examine interactions between local and reflex influences on forearm skin blood flow (SkBF). In part I locally increasing arm skin temperature (Tsk) to 42.5 degrees C was not associated with increases in underlying forearm muscle blood flow, esophageal temperature (Tes), or forearm blood flow in the contralateral cool arm. In part II whole-body Tsk was held at 38 or 40 degrees C and the surface temperature of one arm held at 38 or 42 degrees C for prolonged periods. SkBF in the heated arm rose rapidly with the elevation in body Tsk and arm Tsk continued to rise as Tes rose. SkBF in the arm kept at 32 degrees C paralleled rising Tes. In six studies, SkBF in the cool arm ultimately converged with SkBF in the heated arm. In eight other studies, heated arm SkBF maintained an offset above cool arm SkBF throughout the period of whole-body heating. In part III, local arm Tsk of 42.5 degrees C did not abolish skin vasoconstrictor response to lower body negative pressure. We conclude that local and reflex influences to skin interact so as to modify the degree but not the pattern of skin vasomotor response.


2018 ◽  
Vol 6 (4) ◽  
pp. e13594 ◽  
Author(s):  
Noud van Helmond ◽  
Blair D. Johnson ◽  
Walter W. Holbein ◽  
Humphrey G. Petersen-Jones ◽  
Ronée E. Harvey ◽  
...  

2000 ◽  
Vol 99 (5) ◽  
pp. 363-369 ◽  
Author(s):  
Gerard A. RONGEN ◽  
Jacques W. M. LENDERS ◽  
Paul SMITS ◽  
John S. FLORAS

Although there is as yet no method which measures directly the neuronal release of noradrenaline in humans in vivo, the isotope dilution technique with [3H]noradrenaline has been applied to estimate forearm neuronal noradrenaline release into plasma. Two different equations have been developed for this purpose: one to estimate the spillover of noradrenaline into the venous effluent, and a modified formula (often referred to as the appearance rate) which may reflect more closely changes in the neuronal release of noradrenaline into the synaptic cleft, particularly during interventions that alter forearm blood flow. The present study was performed to compare the effects of two interventions known to exert contrasting actions on neuronal forearm noradrenaline release and forearm blood flow. Intra-arterial infusion of sodium nitroprusside at doses without systemic effect increases forearm blood flow, but not neuronal noradrenaline release. In contrast, lower-body negative pressure at -25 mmHg causes forearm vasoconstriction by stimulating neuronal noradrenaline release. During sodium nitroprusside infusion, forearm noradrenaline spillover increased from 1.1±0.3 to 2.2±1.0 pmol·min-1·100 ml-1 (P < 0.05), whereas the forearm noradrenaline appearance rate was unchanged. Lower-body negative pressure did not affect the forearm noradrenaline spillover rate, but increased the forearm noradrenaline appearance rate from 3.4±0.4 pmol·min-1·100 ml-1 at baseline to 5.0±0.9 pmol·min-1·100 ml-1 (P < 0.05). These results indicate that the noradrenaline appearance rate provides the better approximation of changes in forearm neuronal noradrenaline release in response to stimuli which alter local blood flow.


2012 ◽  
Vol 98 (2) ◽  
pp. 473-480 ◽  
Author(s):  
Rebekah A. I. Lucas ◽  
Matthew S. Ganio ◽  
James Pearson ◽  
Craig G. Crandall

1986 ◽  
Vol 61 (3) ◽  
pp. 994-998 ◽  
Author(s):  
L. K. Essandoh ◽  
D. S. Houston ◽  
P. M. Vanhoutte ◽  
J. T. Shepherd

Modest degrees of lower body negative pressure (less than 20 mmHg) cause a reflex constriction of forearm resistance vessels attributable to a decrease in activity of cardiopulmonary mechanoreceptors. In the present study, we sought to determine whether the calf vessels respond similarly. Left forearm and right calf blood flows were measured simultaneously by strain-gauge plethysmography in 10 healthy volunteers. Forearm flows decreased significantly from control during negative pressures of 10, 15, or 20 mmHg, whereas calf flows did not decrease significantly until 20 mmHg; at 10, 15, and 20 mmHg, decreases in forearm flow were significantly greater than those of the calf. Similar results were obtained in a second series of experiments in which venous pooling in the right leg during lower body negative pressure was prevented by enclosing it in a boot. At 40 mmHg, or after a Valsalva maneuver, both forearm and calf vessels constricted markedly and to the same degree. It appears that the reflex reduction in blood flow to the skeletal muscles of the limbs resulting from deactivation of the low-pressure intrathoracic mechanoreceptors is directed primarily to the arm.


Sign in / Sign up

Export Citation Format

Share Document