human forearm
Recently Published Documents


TOTAL DOCUMENTS

612
(FIVE YEARS 25)

H-INDEX

68
(FIVE YEARS 2)

2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Shashank S. Kumat ◽  
Panos S. Shiakolas

Abstract Background Tissue healthiness could be assessed by evaluating its viscoelastic properties through localized contact reaction force measurements to obtain quantitative time history information. To evaluate these properties for hard to reach and confined areas of the human body, miniature force sensors with size constraints and appropriate load capabilities are needed. This research article reports on the design, fabrication, integration, characterization, and in vivo experimentation of a uniaxial miniature force sensor on a human forearm. Methods The strain gauge based sensor components were designed to meet dimensional constraints (diameter ≤3.5mm), safety factor (≥3) and performance specifications (maximum applied load, resolution, sensitivity, and accuracy). The sensing element was fabricated using traditional machining. Inverted vat photopolymerization technology was used to prototype complex components on a Form3 printer; micro-component orientation for fabrication challenges were overcome through experimentation. The sensor performance was characterized using dead weights and a LabVIEW based custom developed data acquisition system. The operational performance was evaluated by in vivo measurements on a human forearm; the relaxation data were used to calculate the Voigt model viscoelastic coefficient. Results The three dimensional (3D) printed components exhibited good dimensional accuracy (maximum deviation of 183μm). The assembled sensor exhibited linear behavior (regression coefficient of R2=0.999) and met desired performance specifications of 3.4 safety factor, 1.2N load capacity, 18mN resolution, and 3.13% accuracy. The in vivo experimentally obtained relaxation data were analyzed using the Voigt model yielding a viscoelastic coefficient τ=12.38sec and a curve-fit regression coefficient of R2=0.992. Conclusions This research presented the successful design, use of 3D printing for component fabrication, integration, characterization, and analysis of initial in vivo collected measurements with excellent performance for a miniature force sensor for the assessment of tissue viscoelastic properties. Through this research certain limitations were identified, however the initial sensor performance was promising and encouraging to continue the work to improve the sensor. This micro-force sensor could be used to obtain tissue quantitative data to assess tissue healthiness for medical care over extended time periods.


Author(s):  
Muhammad Ahsan Gull ◽  
Thomas Bak ◽  
Shaoping Bai

Work-related musculoskeletal disorders (MSDs) are among the most commonly reported issue in Europe. Using robotic exoskeletons to support users in performing heavy industrial tasks can effectively mitigate the work-related MSDs. In this paper, a dynamic model of a hybrid exoskeleton is presented to analyze the assistive effect. The exoskeleton in this study is able to passively support the human shoulder joint and actively support the human forearm movements by providing different levels of assistive torque. With the model, two different tasks are simulated, i.e., an overhead lifting task and a static load transferring task. The results show that the assistive torque provided by the passive spring-loaded mechanism reduces the maximum human upper arm effort by 22.65%. Moreover, the exoskeleton elbow joint’s assistive torque reduces the peak torque of human forearm from [Formula: see text] Nm to [Formula: see text] Nm. All these results demonstrate the efficacy of the model developed in the simulation and analysis of human-exoskeleton systems.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1578
Author(s):  
Luisa Euler ◽  
Li Guo ◽  
Nils-Krister Persson

Textile electrodes, also called textrodes, for biosignal monitoring as well as electrostimulation are central for the emerging research field of smart textiles. However, so far, only the general suitability of textrodes for those areas was investigated, while the influencing parameters on the contact impedance related to the electrode construction and external factors remain rather unknown. Therefore, in this work, six different knitted electrodes, applied both wet and dry, were compared regarding the influence of specific knitting construction parameters on the three-electrode contact impedance measured on a human forearm. Additionally, the influence of applying pressure was investigated in a two-electrode setup using a water-based agar dummy. Further, simulation of an equivalent circuit was used for quantitative evaluation. Indications were found that the preferred electrode construction to achieve the lowest contact impedance includes a square shaped electrode, knitted with a high yarn density and, in the case of dry electrodes, an uneven surface topography consisting of loops, while in wet condition a smooth surface is favorable. Wet electrodes are showing a greatly reduced contact impedance and are therefore to be preferred over dry ones; however, opportunities are seen for improving the electrode performance of dry electrodes by applying pressure to the system, thereby avoiding disadvantages of wet electrodes with fluid administration, drying-out of the electrolyte, and discomfort arising from a “wet feeling”.


2020 ◽  
Vol 101 (11) ◽  
pp. e56
Author(s):  
Tanvir Ahmed ◽  
Asif Al Zubayer Swapnil ◽  
Md Rasedul Islam ◽  
Inga Wang ◽  
Mohammad Rahman

2020 ◽  
Vol 8 (10) ◽  
pp. 1481
Author(s):  
Mengfei Peng ◽  
Debabrata Biswas

The human forearm skin microbiome ecosystem contains rich and diverse microbes, which are influenced by environmental exposures. The microbial representatives can be exchanged between human and environment, specifically animals, by which they share certain or similar epidermal microbes. Livestock and poultry are the microbial sources that are associated with the transmission of community-based pathogenic infections. Here, in this study, we proposed investigating the environmental influences introduced by livestock/poultry operations on forearm skin microflora of on-site farm workers. A total of 30 human skin swab samples were collected from 20 animal workers in dairy or integrated farms and 10 healthy volunteer controls. The skin microbiome was 16S metagenomics that were sequenced with Illumina MiSeq system. For skin microbial community analysis, the abundance of major phyla and genera as well as alpha and beta diversities were compared across groups. We identified distinctive microbial compositional patterns on skin of workers in farm with different animal commodities. Workers in integrated farms containing various animals were associated with higher abundances of epidermal Proteobacteria, especially Pseudomonas and Acinetobacter, but lower Actinobacteria, especially Corynebacterium and Propionibacterium. For those workers with frequent dairy cattle operations, their Firmicutes in the forearm skin microbiota were enriched. Furthermore, farm animal operations also reduced Staphylococcus and Streptococcus, as well as modulated the microbial biodiversity in farm workers’ skin microbiome. The alterations of forearm skin microflora in farm workers, influenced by their frequent farm animal operations, may increase their risk in skin infections with unusual pathogens and epidermal diseases.


2020 ◽  
Vol 68 (4) ◽  
Author(s):  
Jingchun Lyu ◽  
Novaf Özgün ◽  
David J. Kondziela ◽  
Roland Bennewitz

AbstractFriction of textiles on the human forearm is an important factor in comfort sensations of garments. We built an experiment to measure friction for textiles sliding on the forearm under loading conditions which are characteristic for wearing shirts or jackets. The hair coverage of the participants’ forearm was quantified by image analysis of photographs of the arm in the region of contact. Friction results for five standard textiles suggest to treat hair coverage in two classes. Sweating after physical activity leads to an increase of friction by factors of 2 to 5 for participants with less hairy forearms, while an increase by a factor of 1 to 1.7 only was found for participants with more hairy forearms. We introduce a method of wetting the forearm of study participants in a controlled way with water, which results in similar friction as for the sweating forearm after physical activity. The method allows for efficient studies of the role of skin moisture for friction including varying hair coverage of the skin.


Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5333
Author(s):  
Gautam Anand ◽  
Andrew Lowe

This work aims to investigate the feasibility of employing multi-frequency bioimpedance analysis for hemodynamic assessment. Towards this, we aim to explore one of its implementations, electrical impedance spectroscopy (EIS), for estimating changes in radial artery diameter due to blood flow. Following from our previous investigations, here, we use a commercial device—the Quadra® Impedance Spectroscopy device—for impedance measurements of the forearm of three subjects under normal conditions and occluding the artery with a cuff. This was performed simultaneously with ultrasound measurements as a reference. The impedance spectra were measured over time, yielding waveforms reflecting changes due to blood flow. Contributions from the fat/muscle domains were accounted for using the occluded impedance response, resulting in arterial impedance. A modified relationship was approximated to calculate the diameter from the arterial impedance, which showed a similarity with ultrasound measurements. Comparison with the ultrasound measurements revealed differences in phase and amplitude, primarily due to the approximated relationship between impedance and diameter and neglecting the impedance phase analysis. This work shows the potential of EIS, with improvements, towards estimating blood flow-induced variation in arteries. Further analysis and improvements could help place this technology in mainstream clinical practice for hemodynamic monitoring.


Sign in / Sign up

Export Citation Format

Share Document