scholarly journals Central AT1 receptor signaling by circulating angiotensin II is permissive to acute intermittent hypoxia-induced sympathetic neuroplasticity

2020 ◽  
Vol 128 (5) ◽  
pp. 1329-1337
Author(s):  
Caroline G. Shimoura ◽  
Mary Ann Andrade ◽  
Glenn M. Toney

Acute intermittent hypoxia (AIH) triggers sympathetic long-term facilitation (sLTF) that relies on peripheral renin-angiotensin system (RAS) activation. Here, increasing AIH cycles from 5 to 10 proportionally increased RAS activity, but not the magnitude of post-AIH sLTF. Brain angiotensin II (ANG II) receptor blockade and nephrectomy each largely prevented sLTF, whereas central ANG II rescued it following nephrectomy. Peripheral RAS activation by AIH induces time-dependent neuroplasticity at an apparent central ANG II signaling threshold, triggering a stereotyped sLTF response.

Endocrinology ◽  
1999 ◽  
Vol 140 (2) ◽  
pp. 675-682 ◽  
Author(s):  
Jörg Peters ◽  
Nicholas Obermüller ◽  
Alexander Woyth ◽  
Barbara Peters ◽  
Christiane Maser-Gluth ◽  
...  

Abstract Angiotensin II (ANG II) is a major stimulator of aldosterone biosynthesis. When investigating the relative contribution of circulating and locally produced ANG II, we were therefore surprised to find that ANG II, given chronically sc (200 ng/kg·min), markedly inhibits a nephrectomy (NX)-induced rise of aldosterone concentrations (from 10 ± 2 to 465 ± 90 ng/100 ml in vehicle infused, and from 9 ± 2 to 177 ± 35 in ANG II infused rats 55 h after NX and hemodialysis). We further observed, by in situ hybridization, that bilateral NX increases the number of adrenocortical cells expressing renin and that this rise was prevented by ANG II. Moreover, the rise of aldosterone levels was also inhibited by the AT1-receptor antagonist, losartan (10 μg/kg·min, chronically ip from 8 ± 2 to 199 ± 26 ng/100 ml), despite the absence of circulating renin and a reduction of ANG I to less than 10%. These data demonstrate that aldosterone production, after NX, is regulated by an intraadrenal renin-angiotensin system and that this system is physiologically suppressed by circulating angiotensin. Because the effects of losartan or ANG II on aldosterone production involved a latency period of at least 30 h after NX and were associated with a modulation or recruitment of renin-producing cells, we suggest that the intraadrenal renin-angiotensin system operates via regulation of cell differentiation on a long-term scale, rather than or additionally to its short-term effects on aldosterone synthase activity.


2021 ◽  
Author(s):  
André Felipe Rodrigues ◽  
Mihail Todiras ◽  
Fatimunnisa Qadri ◽  
Maria Jose Campagnole-Santos ◽  
Natalia Alenina ◽  
...  

In spite of the fact that the modulatory effects of angiotensin II (Ang II) on the sympathetic nerve activity to targeted organs involved in blood pressure (BP) regulation is well acknowledged, the local production of this peptide in the brain and the consequences of enhanced central Ang II beyond the cardiovascular system are not yet well comprehended. In this study, we generated and validated a new transgenic mouse line overexpressing the rat full-length angiotensinogen (Agt) protein specifically in the brain (Agt-Tg). Adult Agt-Tg mice presented overall increased gene expression of total Agt in the brain including brainstem and hypothalamus. In addition, the excess of Agt led to abundantly detectable brain Ang II levels as well as increased circulating copeptin levels. Agt-Tg displayed raised BP in acute recordings, while long-term telemetrically measured basal BP was indistinguishable from wildtypes. Agt-Tg has altered peripheral renin angiotensin system and vasomotor sympathetic tone homeostasis, because renal gene expression analysis, plasma Ang II measurements and ganglionic blockade experiments revealed suppressed renin expression, reduced Ang II and higher neurogenic pressure response, respectively. Plasma and urine screens revealed apparently normal fluid and electrolyte handling in Agt-Tg. Interestingly, hematological analyses showed increased hematocrit in Agt-Tg caused by enhanced erythropoiesis, which was reverted by submitting the transgenic mice to a long-term peripheral sympathectomy protocol. Collectively, our findings suggest that Agt-Tg is a valuable tool not only to study brain Ang II formation and its modulatory effects on cardiovascular homeostasis but also its role in erythropoiesis control via autonomic modulation.


2016 ◽  
Vol 311 (2) ◽  
pp. H404-H414 ◽  
Author(s):  
Carlos M. Ferrario ◽  
Sarfaraz Ahmad ◽  
Jasmina Varagic ◽  
Che Ping Cheng ◽  
Leanne Groban ◽  
...  

Although it is well-known that excess renin angiotensin system (RAS) activity contributes to the pathophysiology of cardiac and vascular disease, tissue-based expression of RAS genes has given rise to the possibility that intracellularly produced angiotensin II (Ang II) may be a critical contributor to disease processes. An extended form of angiotensin I (Ang I), the dodecapeptide angiotensin-(1–12) [Ang-(1–12)], that generates Ang II directly from chymase, particularly in the human heart, reinforces the possibility that an alternative noncanonical renin independent pathway for Ang II formation may be important in explaining the mechanisms by which the hormone contributes to adverse cardiac and vascular remodeling. This review summarizes the work that has been done in evaluating the functional significance of Ang-(1–12) and how this substrate generated from angiotensinogen by a yet to be identified enzyme enhances knowledge about Ang II pathological actions.


2003 ◽  
Vol 95 (6) ◽  
pp. 2614-2623 ◽  
Author(s):  
A. G. Zabka ◽  
G. S. Mitchell ◽  
E. B. Olson ◽  
M. Behan

Age and the estrus cycle affect time-dependent respiratory responses to episodic hypoxia in female rats. Respiratory long-term facilitation (LTF) is enhanced in middle-aged vs. young female rats ( 72 ). We tested the hypothesis that phrenic and hypoglossal (XII) LTF are diminished in acyclic geriatric rats when fluctuating sex hormone levels no longer establish conditions that enhance LTF. Chronic intermittent hypoxia (CIH) enhances LTF ( 41 ); thus we further predicted that CIH would restore LTF in geriatric female rats. LTF was measured in young (3-4 mo) and geriatric (20-22 mo) female Sasco Sprague-Dawley rats and in a group of geriatric rats exposed to 1 wk of nocturnal CIH (11 vs. 21% O2 at 5-min intervals, 12 h/night). In anesthetized, paralyzed, vagotomized, and ventilated rats, time-dependent hypoxic phrenic and XII responses were assessed. The short-term hypoxic response was measured during the first of three 5-min episodes of isocapnic hypoxia (arterial Po2 35-45 Torr). LTF was assessed 15, 30, and 60 min postepisodic hypoxia. Phrenic and XII short-term hypoxic response was not different among groups, regardless of CIH treatment ( P > 0.05). LTF in geriatric female rats was smaller than previously reported for middle-aged rats but comparable to that in young female rats. CIH augmented phrenic and XII LTF to levels similar to those of middle-aged female rats without CIH ( P < 0.05). The magnitude of phrenic and XII LTF in all groups was inversely related to the ratio of progesterone to estradiol serum levels ( P < 0.05). Thus CIH and sex hormones influence the magnitude of LTF in geriatric female rats.


1985 ◽  
Vol 248 (3) ◽  
pp. R371-R377 ◽  
Author(s):  
B. S. Huang ◽  
M. J. Kluger ◽  
R. L. Malvin

The thermoregulatory role of brain angiotensin II (ANG II) was tested by intracerebroventricular (IVT) infusion of ANG II or the converting enzyme inhibitor SQ 20881 (SQ) in 15 conscious sheep. Deep body temperature decreased 0.30 +/- 0.07 degree C (SE) during the 3-h period of IVT ANG II (25 ng/min) infusion (P less than 0.05) and increased 0.50 +/- 0.13 degree C during IVT SQ (1 microgram/min) infusion (P less than 0.01). To determine whether the rise in body temperature after IVT SQ infusion might be the result of a central renin-angiotensin system (RAS), SQ was infused IVT in five conscious sheep 20 h after bilateral nephrectomy. This resulted in a significant rise in body temperature of 0.28 +/- 0.05 degree C (P less than 0.05). When vasopressin antidiuretic hormone (ADH) was infused intravenously at the same time of IVT SQ infusion, the rise in temperature was depressed, but ADH did not lower the temperature below basal. IVT dopamine (20 micrograms/min) increased body temperature by 0.40 +/- 0.04 degree C (P less than 0.01), which was qualitatively similar to the result with IVT SQ. These data support the hypothesis that endogenous brain ANG II may play a role in thermoregulation. Furthermore, plasma ADH level, regulated in part by brain ANG II, is probably not the mediator of that thermoregulation. The similar effects of IVT dopamine and SQ on body temperature strengthen the hypothesis that dopamine may be involved in the central action of brain ANG II.


1985 ◽  
Vol 248 (5) ◽  
pp. R541-R548
Author(s):  
B. S. Huang ◽  
R. L. Malvin ◽  
R. J. Grekin

The effects of intracerebroventricular (IVT) infusion of angiotensin II (ANG II), the converting enzyme inhibitor SQ 20881, and dopamine were studied in 15 conscious Na-depleted sheep. IVT ANG II (25 ng/min) significantly increased plasma aldosterone (163 +/- 24%) and vasopressin (ADH) (533 +/- 100%). Plasma renin activity (PRA) was decreased to 64 +/- 10% of basal. IVT SQ (1 microgram/min) decreased aldosterone to 70 +/- 10% and ADH to 55 +/- 9% of basal. PRA increased to 124 +/- 10%. There were no significant changes in plasma Na, K, or cortisol levels nor in mean arterial or intracranial pressure after either infusion. Increasing the dose of SQ to 10 micrograms/min resulted in an increased magnitude of change in the same variables. IVT SQ (1 microgram/min) significantly decreased aldosterone level in five nephrectomized sheep. The responses to IVT dopamine (20 micrograms/min) were qualitatively similar to those elicited by IVT SQ. These data support the existence of an endogenous brain renin-angiotensin system (RAS) independent of the renal RAS. ANG II acts centrally to regulate plasma ADH, aldosterone, and PRA levels. The similarity of the responses to SQ and dopamine suggests that a dopaminergic pathway may be involved in these responses.


1990 ◽  
Vol 259 (2) ◽  
pp. H543-H553
Author(s):  
R. D. Randall ◽  
B. G. Zimmerman

Rabbits were bilaterally nephrectomized for 24 h or received an angiotensin-converting enzyme (ACE) inhibitor chronically (5 days) before an acute experiment. Conductance responses to sympathetic nerve stimulation (SNS) (0.25, 0.75, and 2.25 Hz) and norepinephrine (NE) administration (0.2, 0.6, and 1.8 micrograms ia) were determined from simultaneous blood pressure and iliac blood flow measurements. Conductance responses to SNS were significantly reduced in nephrectomized (44, 26, and 20%) and chronic ACE inhibition (39, 31, and 24%) groups compared with normal controls, whereas conductance responses to NE were unchanged. Continuous infusion of angiotensin II (ANG II) for 24 h restored the depressed responses to SNS in nephrectomized and chronic ACE inhibition groups compared with normal controls but did not change conductance responses to NE. Acute ACE inhibition did not affect the conductance responses to SNS or NE compared with controls. Vascular tissue ACE activity was inhibited to a similar degree (50%) in both acute and chronic ACE inhibition groups compared with normal rabbits. Sodium depletion increased the conductance responses to SNS (30 and 24% at 0.25 and 0.75 Hz, respectively), but responses to NE were not affected. Chronic ACE inhibition significantly attenuated the conductance responses to SNS and slightly decreased responses to NE in sodium-depleted rabbits. Thus, in the anesthetized rabbit, the renin-angiotensin system potentiates the effect of SNS, presumably by ANG II acting at a prejunctional site, and this effect of ANG II appears to be long term in nature. Therefore, the renin-angiotensin system exerts a physiological role in the control of blood pressure in addition to the ability of this system to support arterial pressure in pathophysiological states.


1994 ◽  
Vol 266 (1) ◽  
pp. F117-F119 ◽  
Author(s):  
J. A. Haas ◽  
J. C. Lockhart ◽  
T. S. Larson ◽  
T. Henrikson ◽  
F. G. Knox

Increases in renal interstitial hydrostatic pressure (RIHP) increase urinary sodium excretion (UNaV). Experimentally increasing RIHP by direct renal interstitial volume expansion (DRIVE) has been shown to decrease proximal tubule sodium reabsorption. The purpose of the present study was to investigate whether the renin-angiotensin system modulates the natriuretic response to DRIVE. Unilateral nephrectomy and implantation of two polyethylene matrices were performed 3 wk before the acute experiment. Fractional sodium excretion (FENa), RIHP, and glomerular filtration rate (GFR) were measured before and after DRIVE in control rats (n = 9) and in rats receiving the angiotensin II (ANG II) receptor antagonist, losartan potassium (10 mg/kg i.v.; n = 10). DRIVE was achieved by infusing 100 microliters of 2.5% albumin solution directly into the renal interstitium. GFR remained unchanged by DRIVE in both groups. In control animals, DRIVE significantly increased both RIHP (delta 3.8 +/- 0.5 mmHg) and FENa (delta 0.92 +/- 0.19%). In the losartan-treated group, RIHP (delta 2.8 +/- 0.4 mmHg) and FENa (delta 1.93 +/- 0.41%) also significantly increased. The natriuretic response to DRIVE was significantly enhanced during ANG II receptor blockade compared with control animals (delta UNaV/delta RIHP = 2.01 +/- 0.67 vs. 0.44 +/- 0.17 mu eq.min-1 x mmHg-1, respectively; P < 0.05). These results suggest that the blockade of angiotensin enhances the natriuretic response to increased RIHP during DRIVE.


2008 ◽  
Vol 294 (1) ◽  
pp. R26-R32 ◽  
Author(s):  
J. C. B. Ferreira ◽  
A. V. Bacurau ◽  
F. S. Evangelista ◽  
M. A. Coelho ◽  
E. M. Oliveira ◽  
...  

Sympathetic hyperactivity (SH) and renin angiotensin system (RAS) activation are commonly associated with heart failure (HF), even though the relative contribution of these factors to the cardiac derangement is less understood. The role of SH on RAS components and its consequences for the HF were investigated in mice lacking α2A and α2C adrenoceptor knockout (α2A/α2CARKO) that present SH with evidence of HF by 7 mo of age. Cardiac and systemic RAS components and plasma norepinephrine (PN) levels were evaluated in male adult mice at 3 and 7 mo of age. In addition, cardiac morphometric analysis, collagen content, exercise tolerance, and hemodynamic assessments were made. At 3 mo, α2A/α2CARKO mice showed no signs of HF, while displaying elevated PN, activation of local and systemic RAS components, and increased cardiomyocyte width (16%) compared with wild-type mice (WT). In contrast, at 7 mo, α2A/α2CARKO mice presented clear signs of HF accompanied only by cardiac activation of angiotensinogen and ANG II levels and increased collagen content (twofold). Consistent with this local activation of RAS, 8 wk of ANG II AT1 receptor blocker treatment restored cardiac structure and function comparable to the WT. Collectively, these data provide direct evidence that cardiac RAS activation plays a major role underlying the structural and functional abnormalities associated with a genetic SH-induced HF in mice.


2017 ◽  
Vol 312 (2) ◽  
pp. H223-H231 ◽  
Author(s):  
Ghezal Froogh ◽  
John T. Pinto ◽  
Yicong Le ◽  
Sharath Kandhi ◽  
Yeabsra Aleligne ◽  
...  

Age-dependent alteration of the renin-angiotensin system (RAS) and generation of angiotensin II (Ang II) are well documented. By contrast, RAS-independent generation of Ang II in aging and its responses to exercise have not been explored. To this end, we examined the effects of chymase, a secretory serine protease, on the angiotensin-converting enzyme (ACE)-independent conversion of Ang I to Ang II. We hypothesized that age-dependent alteration of cardiac Ang II formation is chymase dependent in nature and is prevented by exercise training. Experiments were conducted on hearts isolated from young (3 mo), aged sedentary (24 mo), and aged rats chronically exercised on a treadmill. In the presence of low Ang I levels and downregulation of ACE expression/activity, cardiac Ang II levels were significantly higher in aged than young rats, suggesting an ACE-independent response. Aged hearts also displayed significantly increased chymase expression and activity, as well as upregulation of tryptase, a biological marker of mast cells, confirming a mast cell-sourced increase in chymase. Coincidently, cardiac superoxide produced from NADPH oxidase (Nox) was significantly enhanced in aged rats and was normalized by exercise. Conversely, a significant reduction in cardiac expression of ACE2 followed by lower Ang 1-7 levels and downregulation of the Mas receptor (binding protein of Ang 1-7) in aged rats were completely reversed by exercise. In conclusion, local formation of Ang II is increased in aged hearts, and chymase is primarily responsible for this increase. Chronic exercise is able to normalize the age-dependent alterations via compromising chymase/Ang II/angiotensin type 1 receptor/Nox actions while promoting ACE2/Ang 1-7/MasR signaling. NEW & NOTEWORTHY Aging increases angiotensin-converting enzyme (ACE)-independent production of cardiac angiotensin II (Ang II), a response that is driven by chymase in an exercise-reversible manner. These findings highlight chymase, in addition to ACE, as an important therapeutic target in the treatment and prevention of Ang II-induced deterioration of cardiac function in the elderly. Listen to this article's corresponding podcast @ http://ajpheart.podbean.com/e/renin-angiotensin-system-signaling-in-aged-and-age-exercised-rats/ .


Sign in / Sign up

Export Citation Format

Share Document