Perinatal photoperiod organizes adult immune responses in Siberian hamsters (Phodopus sungorus)

2006 ◽  
Vol 290 (6) ◽  
pp. R1714-R1719 ◽  
Author(s):  
Zachary M. Weil ◽  
Leah M. Pyter ◽  
Lynn B. Martin ◽  
Randy J. Nelson

Individuals of many nontropical rodent species display reproductive, immunological, and somatic responses to day length. In general, short day (SD) lengths inhibit reproduction and enhance immune function in the laboratory when all other conditions are held constant. Most studies to date have focused on seasonal variation in immune function in adulthood. However, perinatal photoperiods also communicate critical day length information and serve to establish a developmental trajectory appropriate for the time of year. Nontropical rodents born early in the breeding season undergo rapid reproductive development, presumably to promote mating success during their first reproductive season. Rodents born late in the breeding season suspend somatic growth and puberty until the following vernal breeding season. We tested the hypothesis that perinatal day lengths have similar enduring effects on the immune system of rodents. Siberian hamsters ( Phodopus sungorus) were maintained prenatally and until weaning (21 days) in either SDs (8 h light:16 h dark) or long days (LD) (16 h light:8 h dark), then they were weaned into either the opposite photoperiod or maintained in their natal photoperiod, forming four groups (LD-LD, LD-SD, SD-LD, and SD-SD). After 8-wk in these conditions, cell-mediated immune activity was compared among groups. SD-SD hamsters of both sexes enhanced immune function relative to all other groups. The reproductive effects of perinatal photoperiod were not evident by the end of the experiment; circulating testosterone and cortisol sampled at the end of the experiment reflected the postweaning, but not the perinatal photoperiod. This experiment demonstrates long-lasting organizational effects of perinatal photoperiod on the rodent immune system and indicates that photoperiod-induced changes in the immune system are dissociable from changes in the reproductive system.

2007 ◽  
Vol 293 (1) ◽  
pp. R402-R412 ◽  
Author(s):  
Matthew P. Butler ◽  
Kevin W. Turner ◽  
Jin Ho Park ◽  
James P. Butler ◽  
Justin J. Trumbull ◽  
...  

Photoperiodism research has relied on static day lengths and abrupt transitions between long and short days to characterize the signals that drive seasonal rhythms. To identify ecologically relevant critical day lengths and to test the extent to which naturally changing day lengths synchronize important developmental events, we monitored nine cohorts of male Siberian hamsters ( Phodopus sungorus) born every 2 wk from 4 wk before to 12 wk after the summer solstice in a simulated natural photoperiod (SNP). SNP hamsters born from 4 wk before to 2 wk after the solstice underwent rapid somatic and gonadal growth; among those born 4–6 wk after the solstice, some delayed puberty by many weeks, whereas others manifested early puberty. Hamsters born eight or more weeks after the solstice failed to undergo early testicular development. The transition to delayed development occurred at long day lengths, which induce early puberty when presented as static photoperiods. The first animals to delay puberty may do so predominantly on the basis of postnatal decreases in day length, whereas in later cohorts, a comparison of postnatal day length to gestational day length may contribute to arrested development. Despite differences in timing of birth and timing of puberty, autumn gonadal regression and spring gonadal and somatic growth occurred at similar calendar dates in all cohorts. Incrementally changing photoperiods exert a strong organizing effect on seasonal rhythms by providing hamsters with a richer source of environmental timing cues than are available in simple static day lengths.


Endocrinology ◽  
2010 ◽  
Vol 151 (2) ◽  
pp. 714-721 ◽  
Author(s):  
Brian J. Prendergast

Environmental day length drives nocturnal pineal melatonin secretion, which in turn generates or entrains seasonal cycles of physiology, reproduction, and behavior. In mammals, melatonin (MEL) binds to a number of receptor subtypes including high-affinity (MT1 and MT2) and low-affinity (MT3, nuclear orphan receptors) binding sites, which are distributed throughout the central nervous system and periphery. The MEL receptors that mediate photoperiodic reproductive and behavioral responses to MEL have not been identified in a reproductively photoperiodic species. Here I tested the hypothesis that MT1 receptors are necessary and sufficient to engage photoperiodic responses by challenging male Siberian hamsters (Phodopus sungorus), a species that does not express functional MT2 receptors, with ramelteon (RAM), a specific MT1/MT2 receptor agonist. In hamsters housed in a long-day photoperiod, late-afternoon RAM treatment inhibited gonadotropin secretion, induced gonadal regression, and suppressed food intake and body mass, mimicking effects of MEL. In addition, chronic (24 h/d) RAM infusions were sufficient to obscure endogenous MEL signaling, and these treatments attenuated gonadal regression in short days. Together, the outcomes indicate that signaling at the MT1 receptor is sufficient and necessary to mediate the effects of photoperiod-driven changes in MEL on behavior and reproductive function in a reproductively photoperiodic mammal.


2002 ◽  
Vol 14 (4) ◽  
pp. 318-329 ◽  
Author(s):  
B. J. Prendergast ◽  
K. E. Wynne-Edwards ◽  
S. M. Yellon ◽  
R. J. Nelson

Reproduction ◽  
2008 ◽  
Vol 135 (3) ◽  
pp. 335-342 ◽  
Author(s):  
Esther W Kabithe ◽  
Ned J Place

Fertility and fecundity decline with advancing age in female mammals, but reproductive aging was decelerated in Siberian hamsters (Phodopus sungorus) raised in a short-day (SD) photoperiod. Litter success was significantly improved in older hamsters when reared in SD and the number of primordial follicles was twice that of females held in long days (LD). Because anti-Müllerian hormone (AMH) appears to inhibit the recruitment of primordial follicles in mice, we sought to determine whether the expression patterns of AMH differ in the ovaries and serum of hamsters raised in SD versus LD. Ovaries of SD female hamsters are characterized by a paucity of follicular development beyond the secondary stage and are endowed with an abundance of large eosinophilic cells, which may derive from granulosa cells of oocyte-depleted follicles. In ovaries from 10-week-old SD hamsters, we found that the so-called ‘hypertrophied granulosa cells’ were immunoreactive for AMH, as were granulosa cells within healthy-appearing primary and secondary follicles. Conversely, ovaries from age-matched LD animals lack the highly eosinophilic cells present in SD ovaries. Therefore, AMH staining in LD was limited to primary and secondary follicles that are comparable in number to those found in SD ovaries. The substantially greater AMH expression in SD ovaries probably reflects the abundance of hypertrophied granulosa cells in SD ovaries and their relative absence in LD ovaries. The modulation of ovarian AMH by day length is a strong mechanistic candidate for the preservation of primordial follicles in female hamsters raised in a SD photoperiod.


Biology Open ◽  
2021 ◽  
Vol 10 (3) ◽  
Author(s):  
E. Yu Kondratyuk ◽  
P. A. Zadubrovskiy ◽  
I. V. Zadubrovskaya ◽  
A. V. Sakharov

ABSTRACT In this investigation we assessed the physiological reaction of hamsters in response to chemical signals from potential sexual partners, and also after a private meeting with them, which allowed us to ascertain the type of mating system for this species. The reception of olfactory signals led to an increase in peroxidase activity in the blood for both sexes, indicative of activity of a non-specific line of immune defense in recipients. The increase in blood cortisol level in response to the chemical signals of a partner was only observed in females. Males spent more time near samples of estrous females, with elevated levels of cortisol in the urine. In olfactory tests, an hour after grouping all the individuals in pairs there was a significant increase in blood peroxidase activity, which indicates the reaction of a non-specific link in the immune system of partners. This increase was greater in the pairs with a mutual preference. Females from these pairs demonstrated a substantial decrease in stress hormone levels in the plasma after an hour of mating in comparison to females prior to mating, and in non-preferred coupling.


2001 ◽  
Vol 281 (5) ◽  
pp. R1613-R1623 ◽  
Author(s):  
Michael R. Gorman

Summer and fall decreases in day length induce reproductive regression in adult hamsters and delay reproductive maturation of their young. The following year pubertal development is triggered by an interval timer (IT) that renders animals refractory to inhibitory short day lengths after ∼25 wk. Timing of gonadal and somatic development was examined among offspring born to Siberian hamsters in early-August vs. late-September day lengths. Pubertal maturation was delayed in both groups until late winter. Gonadal growth occurred at significantly later ages among August- vs. September-born males as did late-winter spurts in ponderal growth of both sexes. Timing of reproductive and somatic development depended on postnatal rather than prenatal photoperiod exposure and was unrelated to the circadian entrainment status of dams. When developmental patterns were assessed in relation to time of year, group differences were largely eliminated. Because the IT triggers these developmental events, its duration must be plastic. This plasticity facilitates a relative synchronization or entrainment of developmental milestones in hamsters born into different late-summer/early-fall photoperiods.


2008 ◽  
Vol 294 (2) ◽  
pp. R384-R392 ◽  
Author(s):  
Brian J. Prendergast ◽  
Scott R. Baillie ◽  
Firdaus S. Dhabhar

Siberian hamsters ( Phodopus sungorus) exhibit changes in reproductive and immune function in response to seasonal variations in day length. Exposure to short days induces gonadal regression and inhibits testosterone secretion. In parallel, short days enhance immune function: increasing leukocyte numbers and attenuating cytokine and behavioral responses to infection. We examined whether photoperiodic changes in leukocyte phenotypes and sickness behaviors are dependent on concurrent photoperiodic changes in gonadal function. Male hamsters were gonadectomized or sham-gonadectomized and either exposed to short days (9 h light/day; SD) or kept in their natal long-day (15 h light/day; LD) photoperiod for 10–13 wk. Blood samples were obtained for leukocyte enumeration, and hamsters were challenged with bacterial LPS, which induced behavioral (anorexia, reductions in nest building) and somatic (weight loss) sickness responses. Among gonad-intact hamsters, exposure to SD increased total and CD62L+ lymphocytes and CD3+ T lymphocytes in blood and significantly attenuated LPS-induced sickness responses. Independent of photoperiod, castration alone increased total and CD62L+ lymphocyte and CD3+ T lymphocyte numbers and attenuated somatic and anorexic sickness responses. Among castrated hamsters, SD exposure increased lymphocyte numbers and suppressed sickness behaviors. In castrated hamsters, the magnitude of most immunological effects of SD were diminished relative to those evident in gonad-intact hamsters. The SD phenotype in several measures of immunity can be instated via elimination of gonadal hormones alone; however, photoperiodic effects on immune function persist even in castrated hamsters. Thus, photoperiod affects the immune system and neural-immune interactions underlying sickness behaviors via gonadal hormone-dependent and -independent mechanisms.


Endocrinology ◽  
2001 ◽  
Vol 142 (7) ◽  
pp. 2768-2775 ◽  
Author(s):  
Deborah L. Drazen ◽  
Gregory E. Demas ◽  
Randy J. Nelson

Sign in / Sign up

Export Citation Format

Share Document