Affective responses to changes in day length in Siberian hamsters (Phodopus sungorus)

2005 ◽  
Vol 30 (5) ◽  
pp. 438-452 ◽  
Author(s):  
Brian J. Prendergast ◽  
Randy J. Nelson
2006 ◽  
Vol 290 (6) ◽  
pp. R1714-R1719 ◽  
Author(s):  
Zachary M. Weil ◽  
Leah M. Pyter ◽  
Lynn B. Martin ◽  
Randy J. Nelson

Individuals of many nontropical rodent species display reproductive, immunological, and somatic responses to day length. In general, short day (SD) lengths inhibit reproduction and enhance immune function in the laboratory when all other conditions are held constant. Most studies to date have focused on seasonal variation in immune function in adulthood. However, perinatal photoperiods also communicate critical day length information and serve to establish a developmental trajectory appropriate for the time of year. Nontropical rodents born early in the breeding season undergo rapid reproductive development, presumably to promote mating success during their first reproductive season. Rodents born late in the breeding season suspend somatic growth and puberty until the following vernal breeding season. We tested the hypothesis that perinatal day lengths have similar enduring effects on the immune system of rodents. Siberian hamsters ( Phodopus sungorus) were maintained prenatally and until weaning (21 days) in either SDs (8 h light:16 h dark) or long days (LD) (16 h light:8 h dark), then they were weaned into either the opposite photoperiod or maintained in their natal photoperiod, forming four groups (LD-LD, LD-SD, SD-LD, and SD-SD). After 8-wk in these conditions, cell-mediated immune activity was compared among groups. SD-SD hamsters of both sexes enhanced immune function relative to all other groups. The reproductive effects of perinatal photoperiod were not evident by the end of the experiment; circulating testosterone and cortisol sampled at the end of the experiment reflected the postweaning, but not the perinatal photoperiod. This experiment demonstrates long-lasting organizational effects of perinatal photoperiod on the rodent immune system and indicates that photoperiod-induced changes in the immune system are dissociable from changes in the reproductive system.


Endocrinology ◽  
2010 ◽  
Vol 151 (2) ◽  
pp. 714-721 ◽  
Author(s):  
Brian J. Prendergast

Environmental day length drives nocturnal pineal melatonin secretion, which in turn generates or entrains seasonal cycles of physiology, reproduction, and behavior. In mammals, melatonin (MEL) binds to a number of receptor subtypes including high-affinity (MT1 and MT2) and low-affinity (MT3, nuclear orphan receptors) binding sites, which are distributed throughout the central nervous system and periphery. The MEL receptors that mediate photoperiodic reproductive and behavioral responses to MEL have not been identified in a reproductively photoperiodic species. Here I tested the hypothesis that MT1 receptors are necessary and sufficient to engage photoperiodic responses by challenging male Siberian hamsters (Phodopus sungorus), a species that does not express functional MT2 receptors, with ramelteon (RAM), a specific MT1/MT2 receptor agonist. In hamsters housed in a long-day photoperiod, late-afternoon RAM treatment inhibited gonadotropin secretion, induced gonadal regression, and suppressed food intake and body mass, mimicking effects of MEL. In addition, chronic (24 h/d) RAM infusions were sufficient to obscure endogenous MEL signaling, and these treatments attenuated gonadal regression in short days. Together, the outcomes indicate that signaling at the MT1 receptor is sufficient and necessary to mediate the effects of photoperiod-driven changes in MEL on behavior and reproductive function in a reproductively photoperiodic mammal.


Reproduction ◽  
2008 ◽  
Vol 135 (3) ◽  
pp. 335-342 ◽  
Author(s):  
Esther W Kabithe ◽  
Ned J Place

Fertility and fecundity decline with advancing age in female mammals, but reproductive aging was decelerated in Siberian hamsters (Phodopus sungorus) raised in a short-day (SD) photoperiod. Litter success was significantly improved in older hamsters when reared in SD and the number of primordial follicles was twice that of females held in long days (LD). Because anti-Müllerian hormone (AMH) appears to inhibit the recruitment of primordial follicles in mice, we sought to determine whether the expression patterns of AMH differ in the ovaries and serum of hamsters raised in SD versus LD. Ovaries of SD female hamsters are characterized by a paucity of follicular development beyond the secondary stage and are endowed with an abundance of large eosinophilic cells, which may derive from granulosa cells of oocyte-depleted follicles. In ovaries from 10-week-old SD hamsters, we found that the so-called ‘hypertrophied granulosa cells’ were immunoreactive for AMH, as were granulosa cells within healthy-appearing primary and secondary follicles. Conversely, ovaries from age-matched LD animals lack the highly eosinophilic cells present in SD ovaries. Therefore, AMH staining in LD was limited to primary and secondary follicles that are comparable in number to those found in SD ovaries. The substantially greater AMH expression in SD ovaries probably reflects the abundance of hypertrophied granulosa cells in SD ovaries and their relative absence in LD ovaries. The modulation of ovarian AMH by day length is a strong mechanistic candidate for the preservation of primordial follicles in female hamsters raised in a SD photoperiod.


2001 ◽  
Vol 281 (2) ◽  
pp. R519-R527 ◽  
Author(s):  
Alexander S. Kauffman ◽  
Alessandra Cabrera ◽  
Irving Zucker

Few studies have directly addressed the impact of fur on seasonal changes in energy intake. The daily food intake of Siberian hamsters ( Phodopus sungorus) was measured under simulated summer and winter conditions in intact animals and those with varying amounts of pelage removed. Energy intake increased up to 44% above baseline control values for approximately 2–3 wk after complete shaving. Increases in food intake varied with condition and were greater in hamsters housed in short than long day lengths and at low (5°C) than moderate (23°C) ambient temperatures. Removal of 8 cm2 of dorsal fur, equivalent to 30% of the total dorsal fur surface, increased food intake, but removal of 4 cm2 had no effect. An 8-cm2 fur extirpation from the ventral surface did not increase food consumption. Food intake was not influenced differentially by fur removal from above brown adipose tissue hot spots. Fur plays a greater role in energy balance in winter- than summer-acclimated hamsters and conserves energy under a wide range of environmental conditions.


2004 ◽  
Vol 70 (3) ◽  
pp. 813-820 ◽  
Author(s):  
Brian J. Prendergast ◽  
Andrew K. Hotchkiss ◽  
Staci D. Bilbo ◽  
Randy J. Nelson

2008 ◽  
Vol 20 (12) ◽  
pp. 1339-1347 ◽  
Author(s):  
T. J. Greives ◽  
S. A. Humber ◽  
A. N. Goldstein ◽  
M.-A. L. Scotti ◽  
G. E. Demas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document