Involvement of protein synthesis in circadian clock of Aplysia eye

1986 ◽  
Vol 250 (1) ◽  
pp. R5-R17
Author(s):  
D. P. Lotshaw ◽  
J. W. Jacklet

The effects of the protein synthesis inhibitors anisomycin and puromycin were measured on protein synthesis and phase shifting of the circadian rhythm in the isolated Aplysia eye. Anisomycin pulses induce phase delays proportional in magnitude to the duration and percentage of protein synthesis inhibition. The phase-response curve to anisomycin pulses consisted of delays induced throughout the subjective night. Delays were maximal between circadian times (CT) 18 and CT 2; pulses initiated between CT 2 and CT 12 did not phase shift. Puromycin induced phase delays and advances. Delays were proportional to the duration and percentage of protein synthesis inhibition, occurring with increasing magnitude throughout the subjective night (CT 12-2). Peptidyl-puromycin formation may contribute to the magnitude of the delay. Advances, occurring between CT 2 and CT 8, required a greater drug concentration and pulse duration than delays and appeared to result from an effect other than protein synthesis inhibition. Our results support the hypothesis of a phase-dependent requirement for protein synthesis during the subjective night in this circadian clock.

1987 ◽  
Vol 2 (2) ◽  
pp. 121-138 ◽  
Author(s):  
Walter Olesiak ◽  
Anne Ungar ◽  
Carl Hirschie Johnson ◽  
J. Woodland Hastings

1981 ◽  
Vol 241 (1) ◽  
pp. R31-R35 ◽  
Author(s):  
H. Nakashima ◽  
J. Perlman ◽  
J. F. Feldman

Cycloheximide (CHX), an inhibitor of cytosolic (80S) protein synthesis in eucaryotes, causes phase shifts of the circadian clock of Neurospora crassa when administered as 4-h pulses to cultures in liquid medium. Differential effects of the pulses at different phases of the circadian cycle were observed and plotted as a phase-response curve (PRC). Nearly all phase shifts observed were phase advances, with maximum sensitivity in the middle of the subjective day. Inhibition of protein synthesis by CHX was the same at both phases of the cycle. The PRC was the same at 20 and 25 degrees C. Dose-response curves for the effects of CHX on phase shifting and inhibition of protein synthesis were determined and showed a striking parallel in the responses of these two phenomena to CHX. These results support the view that synthesis of one or more proteins at specific phases of the circadian cycle is necessary for the normal operation of the circadian clock of Neurospora.


1977 ◽  
Vol 6 (3) ◽  
pp. 355-357 ◽  
Author(s):  
Anita Pruzan ◽  
Philip B. Applewhite ◽  
Michael J. Bucci

1987 ◽  
Vol 95 (2) ◽  
pp. 277-289 ◽  
Author(s):  
Barney E. Dwyer ◽  
Robert N. Nishimura ◽  
Clydette L. Powell ◽  
Susan L. Mailheau

2013 ◽  
Vol 26 (2) ◽  
pp. 203-212 ◽  
Author(s):  
Henar López-Alonso ◽  
Juan Andrés Rubiolo ◽  
Félix Vega ◽  
Mercedes R. Vieytes ◽  
Luis M. Botana

1979 ◽  
Vol 76 (10) ◽  
pp. 5076-5079 ◽  
Author(s):  
A. Das ◽  
R. O. Ralston ◽  
M. Grace ◽  
R. Roy ◽  
P. Ghosh-Dastidar ◽  
...  

eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Fang Guo ◽  
Isadora Cerullo ◽  
Xiao Chen ◽  
Michael Rosbash

Our experiments address two long-standing models for the function of the Drosophila brain circadian network: a dual oscillator model, which emphasizes the primacy of PDF-containing neurons, and a cell-autonomous model for circadian phase adjustment. We identify five different circadian (E) neurons that are a major source of rhythmicity and locomotor activity. Brief firing of PDF cells at different times of day generates a phase response curve (PRC), which mimics a light-mediated PRC and requires PDF receptor expression in the five E neurons. Firing also resembles light by causing TIM degradation in downstream neurons. Unlike light however, firing-mediated phase-shifting is CRY-independent and exploits the E3 ligase component CUL-3 in the early night to degrade TIM. Our results suggest that PDF neurons integrate light information and then modulate the phase of E cell oscillations and behavioral rhythms. The results also explain how fly brain rhythms persist in constant darkness and without CRY.


Sign in / Sign up

Export Citation Format

Share Document