subjective night
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 10)

H-INDEX

18
(FIVE YEARS 0)

PLoS Biology ◽  
2021 ◽  
Vol 19 (10) ◽  
pp. e3001413
Author(s):  
Jonathan H. Cohen ◽  
Kim S. Last ◽  
Corie L. Charpentier ◽  
Finlo Cottier ◽  
Malin Daase ◽  
...  

Light plays a fundamental role in the ecology of organisms in nearly all habitats on Earth and is central for processes such as vision and the entrainment of the circadian clock. The poles represent extreme light regimes with an annual light cycle including periods of Midnight Sun and Polar Night. The Arctic Ocean extends to the North Pole, and marine light extremes reach their maximum extent in this habitat. During the Polar Night, traditional definitions of day and night and seasonal photoperiod become irrelevant since there are only “twilight” periods defined by the sun’s elevation below the horizon at midday; we term this “midday twilight.” Here, we characterize light across a latitudinal gradient (76.5° N to 81° N) during Polar Night in January. Our light measurements demonstrate that the classical solar diel light cycle dominant at lower latitudes is modulated during Arctic Polar Night by lunar and auroral components. We therefore question whether this particular ambient light environment is relevant to behavioral and visual processes. We reveal from acoustic field observations that the zooplankton community is undergoing diel vertical migration (DVM) behavior. Furthermore, using electroretinogram (ERG) recording under constant darkness, we show that the main migratory species, Arctic krill (Thysanoessa inermis) show endogenous increases in visual sensitivity during the subjective night. This change in sensitivity is comparable to that under exogenous dim light acclimations, although differences in speed of vision suggest separate mechanisms. We conclude that the extremely weak midday twilight experienced by krill at high latitudes during the darkest parts of the year has physiological and ecological relevance.


Author(s):  
Naba Kumar Das ◽  
Saptadip Samanta

Melatonin is a pineal hormone, secreted at the subjective night. It is involved in the regulation of many physiological functions, including the sleep-wake cycle, gonadal activity, free radical scavenging, immunomodulation, neuro-protection, and cancer progression. Melatonin acts through cell surface receptors (MT1 and MT2) as well as nuclear receptors. Circadian dysfunction can alter the secretion of melatonin. Inappropriate melatonin level promotes the initiation of many pathologies including cancer. Ovarian cancer is a common form of gynecological disease. Several studies indicate the profound link between impaired melatonin secretion and the progression of ovarian cancer. Melatonin exerts oncostatic effects in multiple ways; it acts as a potent antioxidant, induces apoptosis, and regulates metabolism, and chronic inflammatory response in ovarian cancer cells. Moreover, melatonin improves the efficacy of the current treatment regimen of ovarian cancer and can be used as an adjuvant.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1475
Author(s):  
Shota Kato ◽  
Hong Gil Nam

In unicellular photosynthetic organisms, circadian rhythm is tightly linked to gating of cell cycle progression, and is entrained by light signal. As several organisms obtain a fitness advantage when the external light/dark cycle matches their endogenous period, and aging alters circadian rhythms, senescence phenotypes of the microalga Euglena gracilis of different culture ages were characterized with respect to the cell division cycle. We report here the effects of prolonged-stationary-phase conditions on the cell division cycles of E. gracilis under non-24-h light/dark cycles (T-cycles). Under T-cycles, cells established from 1-month-old and 2-month-old cultures produced lower cell concentrations after cultivation in the fresh medium than cells from 1-week-old culture. This decrease was not due to higher concentrations of dead cells in the populations, suggesting that cells of different culture ages differ in their capacity for cell division. Cells from 1-week-old cultures had a shorter circadian period of their cell division cycle under shortened T-cycles than aged cells. When algae were transferred to free-running conditions after entrainment to shortened T-cycles, the young cells showed the peak growth rate at a time corresponding to the first subjective night, but the aged cells did not. This suggests that circadian rhythms are more plastic in younger E. gracilis cells.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2514
Author(s):  
Santiago Andrés Plano ◽  
Fernando Martín Baidanoff ◽  
Laura Lucía Trebucq ◽  
Sebastián Ángel Suarez ◽  
Fabio Doctorovich ◽  
...  

The circadian clock at the hypothalamic suprachiasmatic nucleus (SCN) entrains output rhythms to 24-h light cycles. To entrain by phase-advances, light signaling at the end of subjective night (circadian time 18, CT18) requires free radical nitric oxide (NO•) binding to soluble guanylate cyclase (sGC) heme group, activating the cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG). Phase-delays at CT14 seem to be independent of NO•, whose redox-related species were yet to be investigated. Here, the one-electron reduction of NO• nitroxyl was pharmacologically delivered by Angeli’s salt (AS) donor to assess its modulation on phase-resetting of locomotor rhythms in hamsters. Intracerebroventricular AS generated nitroxyl at the SCN, promoting phase-delays at CT14, but potentiated light-induced phase-advances at CT18. Glutathione/glutathione disulfide (GSH/GSSG) couple measured in SCN homogenates showed higher values at CT14 (i.e., more reduced) than at CT18 (oxidized). In addition, administration of antioxidants N-acetylcysteine (NAC) and GSH induced delays per se at CT14 but did not affect light-induced advances at CT18. Thus, the relative of NO• nitroxyl generates phase-delays in a reductive SCN environment, while an oxidative favors photic-advances. These data suggest that circadian phase-locking mechanisms should include redox SCN environment, generating relatives of NO•, as well as coupling with the molecular oscillator.


2021 ◽  
Vol 14 ◽  
Author(s):  
Jiexin Cao ◽  
Christophe P. Ribelayga ◽  
Stuart C. Mangel

Adenosine, a major neuromodulator in the central nervous system (CNS), is involved in a variety of regulatory functions such as the sleep/wake cycle. Because exogenous adenosine displays dark- and night-mimicking effects in the vertebrate retina, we tested the hypothesis that a circadian (24 h) clock in the retina uses adenosine to control neuronal light responses and information processing. Using a variety of techniques in the intact goldfish retina including measurements of adenosine overflow and content, tracer labeling, and electrical recording of the light responses of cone photoreceptor cells and cone horizontal cells (cHCs), which are post-synaptic to cones, we demonstrate that a circadian clock in the retina itself—but not activation of melatonin or dopamine receptors—controls extracellular and intracellular adenosine levels so that they are highest during the subjective night. Moreover, the results show that the clock increases extracellular adenosine at night by enhancing adenosine content so that inward adenosine transport ceases. Also, we report that circadian clock control of endogenous cone adenosine A2A receptor activation increases rod-cone gap junction coupling and rod input to cones and cHCs at night. These results demonstrate that adenosine and A2A receptor activity are controlled by a circadian clock in the retina, and are used by the clock to modulate rod-cone electrical synapses and the sensitivity of cones and cHCs to very dim light stimuli. Moreover, the adenosine system represents a separate circadian-controlled pathway in the retina that is independent of the melatonin/dopamine pathway but which nevertheless acts in concert to enhance the day/night difference in rod-cone coupling.


2020 ◽  
Vol 2 (4) ◽  
pp. 434-441
Author(s):  
Nina Li ◽  
Ralf Stanewsky ◽  
Tessa Popay ◽  
Guy Warman ◽  
James Cheeseman

General anaesthesia (GA) is implicated as a cause of postoperative sleep disruption and fatigue with part of the disturbance being attributed to a shift of the circadian clock. In this study, Drosophila melanogaster was used as a model to determine how Isoflurane affects the circadian clock at the behavioural and molecular levels. We measured the response of the clock at both of these levels caused by different durations and different concentrations of Isoflurane at circadian time 4 (CT4). Once characterized, we held the duration and concentration constants (at 2% in air for 6 h) and calculated the phase responses over the entire circadian cycle in both activity and period expression. Phase advances in behaviour were observed during the subjective day, whereas phase delays were associated with subjective night time GA interventions. The corresponding pattern of gene expression preceded the behavioural pattern by approximately four hours. We discuss the implications of this effect for clinical and research practice.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Chihiro Kawaguchi ◽  
Norihito Shintani ◽  
Atsuko Hayata-Takano ◽  
Michiyoshi Hatanaka ◽  
Ai Kuromi ◽  
...  

Abstract We previously showed that mice lacking pituitary adenylate cyclase-activating polypeptide (PACAP) exhibit attenuated light-induced phase shift. To explore the underlying mechanisms, we performed gene expression analysis of laser capture microdissected suprachiasmatic nuclei (SCNs) and found that lipocalin-type prostaglandin (PG) D synthase (L-PGDS) is involved in the impaired response to light stimulation in the late subjective night in PACAP-deficient mice. L-PGDS-deficient mice also showed impaired light-induced phase advance, but normal phase delay and nonvisual light responses. Then, we examined the receptors involved in the response and observed that mice deficient for type 2 PGD2 receptor DP2/CRTH2 (chemoattractant receptor homologous molecule expressed on Th2 cells) show impaired light-induced phase advance. Concordant results were observed using the selective DP2/CRTH2 antagonist CAY10471. These results indicate that L-PGDS is involved in a mechanism of light-induced phase advance via DP2/CRTH2 signaling.


2020 ◽  
Vol 35 (6) ◽  
pp. 576-587
Author(s):  
Phan Q. Duy ◽  
Ruchi Komal ◽  
Melissa E. S. Richardson ◽  
Katie S. Hahm ◽  
Diego C. Fernandez ◽  
...  

To be physiologically relevant, the period of the central circadian pacemaker, located in the suprachiasmatic nucleus (SCN), has to match the solar day in a process known as circadian photoentrainment. However, little is known about the spatiotemporal molecular changes that occur in the SCN in response to light. In this study, we sought to systematically characterize the circadian and light effects on activity-dependent markers of transcriptional (cFos), translational (pS6), and epigenetic (pH3) activities in the mouse SCN. To investigate circadian versus light influences on these molecular responses, we harvested brains from adult wild-type mice in darkness at different circadian times (CT) or from mice exposed to a 15-min light pulse at the middle of the subjective day (CT6, no phase shifts), early subjective night (CT14, large phase delays), or late subjective night (CT22, small phase advances). We found that cFos and pS6 exhibited rhythmic circadian expression in the SCN with distinct spatial rhythms, whereas pH3 expression was undetectable at all circadian phases. cFos rhythms were largely limited to the SCN shell, whereas pS6 rhythms encompassed the entire SCN. pH3, pS6, and cFos showed gating in response to light; however, we were surprised to find that the expression levels of these markers were not higher at phases when larger phase shifts are observed behaviorally (CT14 versus CT22). We then used animals lacking melanopsin (melanopsin knockout [MKO]), which show deficits in phase delays, to further investigate whether changes in these molecular markers correspond to behavioral phase shifts. Surprisingly, only pS6 showed deficits in MKOs at CT14. Therefore, our previous understanding of the molecular pathways that lead to circadian photoentrainment needs to be revised.


2019 ◽  
Author(s):  
Bharath Ananthasubramaniam ◽  
Johanna H. Meijer

AbstractThe suprachiasmatic nucleus (SCN), which serves as the central pacemaker in mammals, regulates the 24-hour rhythm in behavioral activity. However, it is currently unclear whether and how bouts of activity and rest are regulated within the 24-hour cycle (i.e., over ultradian time scales). Therefore, we used passive infrared sensors to measure behavior in mice housed under either a light-dark (LD) cycle or continuous darkness (DD). We found that a probabilistic Markov model captures the ultradian changes in the behavioral state over a 24-hour cycle. In this model, the animal’s behavioral state in the next time interval is determined solely by the animal’s current behavioral state and by the “toss” of a proverbial “biased coin”. We found that the bias of this “coin” is regulated by light input and by the phase of the clock. Moreover, the bias of this “coin” for an animal is related to the average length of rest and activity bouts in that animal. In LD conditions, the average length of rest bouts was greater during the day compared to during the night, whereas the average length of activity bouts was greater during the night compared to during the day. Importantly, we also found that day-night changes in the rest bout lengths were significantly greater than day-night changes in the activity bout lengths. Finally, in DD conditions, the activity and rest bouts also differed between subjective night and subjective day, albeit to a lesser extent compared to LD conditions. The persistent differences in bout length over the circadian cycle following loss of the external LD cycle indicate that the central pacemaker plays a role in regulating rest and activity bouts on an ultradian time scale.


The paper presents a comprehensive clinical, neurological, psychodiagnostic and neurophysiological study results of the Valeo-Dorm Duo drug use for 30 patients (average age 46.9 ± 2.3 years) with initial stages of discirculatory encephalopathy to correct the symptoms of insomnia, anxiety and asthenic syndrome. The Valeo-Dorm Duo drug was taken for two months simultaneously with the basic therapy; there was a 14 days break between the months of admission. A comparative analysis with a control group (30 people) who received only basic symptomatic therapy is carried out. The study design includes a comprehensive examination of all patients before the start of therapy, one month and two months after the start of treatment. It is shown that the combined use of Relax capsules in the daytime and Sleep capsules in the evening complement each other's effects, influencing the different parts of insomnia pathogenesis. The effectiveness of Valeo-Dorm Duo drug appears as an improvement of subjective night sleep indicators, a decrease of daytime sleepiness, and a declined severity of anxiety manifestations and asthenia symptoms during the first month of therapy, while the stable positive dynamics maintain until the end of treatment. According to an objective night sleep assessment using polysomnography, by the end of the treatment course, patients taking Valeo-Dorm Duo had a statistically significant reduction of the falling asleep process duration and the length and percentage of the REM phase increased; the delta sleep and slow wave sleep episodes in general have become longer too; cyclic sleep organization has recovered; the total duration of sleep increased, what resulted in the high rates of the night sleep efficiency index.


Sign in / Sign up

Export Citation Format

Share Document