Brown fat-specific mitochondrial uncoupling protein in adipose tissues of newborn reindeer

1991 ◽  
Vol 260 (6) ◽  
pp. R1229-R1234 ◽  
Author(s):  
P. Soppela ◽  
M. Nieminen ◽  
S. Saarela ◽  
J. S. Keith ◽  
J. N. Morrison ◽  
...  

Reindeer inhabit a severe arctic or subarctic environment, with the young born in early spring under adverse weather conditions. The extreme northern climate imposes a major thermal challenge to the newborn, and in the present study we have examined fetal, neonatal, and young (from 2 wk before birth to 16 mo postpartum) semidomesticated reindeer from northern Finland for the presence of thermogenic brown adipose tissue. Adipose tissues were removed, mitochondria were prepared, and the proteins were separated by molecular weight and blotted onto nitrocellulose membranes. The membranes were then probed for the presence of the 32,000-relative molecular weight mitochondrial uncoupling protein (UCP) unique to brown fat by use of a rabbit anti-(ground squirrel UCP) serum. Immunoreactivity at the molecular weight characteristic of UCP was present in perirenal, abdominal, inter(pre)scapular, sternal, intralumbar, vertebral, tracheal, inguinal, and omental-mesenteral adipose tissues of newborn reindeer (0-2 days of age). No immunoreactivity was detected in coronary adipose tissue. UCP was found at high levels in interscapular and perirenal adipose tissues of fetal reindeer at 2 wk before birth. Although the protein was present during the first few days postpartum, little immunoreactivity was found at 1 mo of age, and none was evident by 2 mo. UCP and its mRNA were also apparent in perirenal adipose tissue of the newborn of another species of Cervidae, the red deer. It is concluded, on the basis of the immunologic identification of UCP, that most adipose tissues of newborn reindeer represent functional brown fat but that there is a subsequent conversion to white adipose tissue by the 2nd mo of life.(ABSTRACT TRUNCATED AT 250 WORDS)

1989 ◽  
Vol 67 (12) ◽  
pp. 1480-1485 ◽  
Author(s):  
Paul Trayhurn ◽  
Norman J. Temple ◽  
Johny Van Aerde

Adipose tissues and other tissues of the pig have been examined for the presence of the mitochondrial "uncoupling protein," characteristic of brown adipose tissue, in order to assess whether brown fat is present in this species. Mitochondria were prepared from various tissues and the proteins separated on the basis of molecular weight by sodium dodecyl sulphate – polyacrylamide gel electrophoresis. Immunoblotting procedures were then used to probe for uncoupling protein, employing a rabbit anti-(rat uncoupling protein) serum. Pigs were examined at 4 days, 4 weeks, and 8 weeks of age. No evidence for the presence of uncoupling protein was found at any of these ages. The protein was, however, readily detected in brown adipose tissue from rats, mice, golden hamsters, guinea pigs, Richardson's ground squirrel, and lambs. An additional group of pigs was acclimated to the cold (10 °C) for a period of 10 days prior to the examination of tissues, but again uncoupling protein was not detected in any tissue. These results indicate that uncoupling protein is either absent from adipose tissues of the pig or is present at such a low concentration that it is unlikely to support thermogenesis. It is concluded that the pig does not contain adipose tissue that is functionally "brown;" adipose tissues in this species appear to be exclusively "white."Key words: brown adipose tissue, white adipose tissue, uncoupling protein, thermogenesis, immunoblotting.


1987 ◽  
Vol 252 (5) ◽  
pp. E627-E636 ◽  
Author(s):  
L. Casteilla ◽  
C. Forest ◽  
J. Robelin ◽  
D. Ricquier ◽  
A. Lombet ◽  
...  

Development changes in the content of the mitochondrial-uncoupling protein (UCP) have been studied in adipose depots of bovine fetuses and a newborn calf as well as in adipose depots of newborn and aging lambs. The occurrence of UCP unique to brown adipose tissue (BAT) was investigated by GDP binding, photoaffinity labeling with 8-azidoadenosine 5'-triphosphate, and immunoblots using specific antibodies directed against rat UCP. A protein of 32,000 relative molecular weight was characterized in both species with properties similar to those of rodent UCP. In bovine, UCP became detectable in the perirenal adipose tissue at day -80 and its content increased until birth. Both in bovine (perirenal, subscapular, and retroperitoneal sites) and in ovine (perirenal, subscapular, retroperitoneal, and pericardiac sites), all adipose tissues except the subcutaneous adipose tissue contained at birth UCP and thus can be considered as BAT. The data indicate that the perirenal adipose depot should play in bovine and ovine a major thermogenic role at birth, whereas perirenal and pericardiac adipose tissues of lambs held under cold conditions for 45 days after birth did not show any immunoreactive UCP.


1999 ◽  
Vol 1999 ◽  
pp. 164-164
Author(s):  
D.S. Finn ◽  
P. Trayhurn ◽  
J. Struthers ◽  
M.A. Lomax

A crucial factor in the prevention of hypothermia in the neonatal lamb is the functional activitation of a mitochondrial uncoupling protein (UCP1) in brown adipose tissue. UCP1 disappears from lamb brown fat over the first 14 days of life (Finn et al., 1998), but it is not known whether this process can be modulated in lambs by the release of catecholamines which have been established in rodents as a mediator of the response to cold stress. This study examines the effect of administering a β-adrenoceptor agonist on the disappearance of UCP1 and UCP1 mRNA during early neonatal life, using immunohistochemistry and in situ hybridization.


1986 ◽  
Vol 251 (1) ◽  
pp. E8-E13 ◽  
Author(s):  
J. Kopecky ◽  
L. Sigurdson ◽  
I. R. Park ◽  
J. Himms-Hagen

Myopathic Syrian hamsters (BIO 14.6) have less brown adipose tissue (BAT) than normal. The trophic response of this tissue to cold is smaller than normal and trophic responses to diet and to photoperiod are absent. The objective was to find out whether activity of thyroxine 5'-deiodinase in their BAT was increased normally in response to cold and thus whether a defect in endogenous production of 3,5,3'-triiodothyronine might underlie the attenuated trophic response. The effect of feeding a high-fat diet on activity of 5'-deiodinase was also studied. Cold acclimation increased thyroxine 5'-deiodinase activity in BAT of the myopathic hamster, but the total remained smaller than normal because of the smaller size. The cold-induced increase in concentration of mitochondrial uncoupling protein was also smaller than normal. The level of serum 3,5,3'-triiodothyronine was low in myopathic hamsters and remained lower than normal when they were cold-exposed or cold acclimated. Feeding the high-fat diet to myopathic hamsters resulted in a greater than normal suppression of thyroxine 5'-deiodinase activity than in normal hamsters; the normal increases in protein content and in concentration of mitochondrial uncoupling protein were absent. We conclude that the defective trophic response of BAT of the myopathic hamster is not secondary to defective regulation of its thyroxine 5'-deiodinase activity because this activity does not appear to be obligatorily linked to hypertrophy of BAT. The low level of serum 3,5,3'-triiodothyronine in the myopathic hamster may be secondary to reduced capacity for peripheral thyroxine deiodination in its BAT.


1988 ◽  
Vol 249 (2) ◽  
pp. 451-457 ◽  
Author(s):  
T Peachey ◽  
R R French ◽  
D A York

We have used a specific immunoassay for uncoupling protein and [3H]GDP binding to study the acute and chronic responses of brown-adipose-tissue (BAT) mitochondria of warm-acclimated rats to housing at 4 degrees C and cold-acclimated rats to housing at 27 degrees C. These studies have shown the following. (1) In the cold-exposed rat the increase in mitochondrial uncoupling-protein concentration parallels the increase in GDP binding from 1 day to 5 days, but that acutely (initial 4 h) the increase in GDP binding is not associated with any change in uncoupling-protein concentration. 2. In the cold-acclimated rat rehoused at 27 degrees C, GDP binding fell by over 50% in the first 2 days, without any change in uncoupling-protein concentrations. 3. Noradrenaline acutely (30 min) increased BAT mitochondrial GDP binding of lean and obese Zucker rats, without any change in uncoupling-protein concentrations. 4. The increases in GDP binding in cold-exposed rats were associated with increases in the rate of swelling of mitochondria in the presence of valinomycin and potassium acetate. The evidence supports the hypothesis that the acute response of the rat to changes in environmental temperature are associated with unmasking or remasking of uncoupling protein, whereas chronically changes in uncoupling-protein concentration predominate.


1987 ◽  
Vol 65 (3) ◽  
pp. 245-251 ◽  
Author(s):  
Mary F. Henningfield ◽  
Robert W. Swick

A polyclonal antisera against rat brown adipose tissue mitochondrial uncoupling protein was used to examine mitochondrial samples from liver and white and brown adipose tissue from several mammalian species. A sodium dodecyl sulfate – polyacrylamide gel electrophoretic separation of proteins combined with an immunochemical method allowed for visualization of antigen–antibody complexes on nitrocellulose blots. Hamster, cavy, monkey, and mouse brown adipose tissue mitochondrial samples cross-reacted with the antisera. Mitochondria prepared from white fat obtained from young swine and sheep contained two closely migrating, antigenically active proteins. Hepatic mitochondria samples did not contain antigenically active protein. Reflectance densitometry was used for quantitation of the uncoupling protein in various mitochondrial samples. In rats fed diets low in protein, there appears to be a dissociation between the concentration of uncoupling protein and the number of nucleotide binding sites as given by the [3H]GDP binding assay. These results are indicative of a physiological activation of the uncoupling protein.


Sign in / Sign up

Export Citation Format

Share Document