Effect of prolonged uterine blood flow reduction on fetal growth in sheep

1996 ◽  
Vol 270 (1) ◽  
pp. R246-R253 ◽  
Author(s):  
D. W. Boyle ◽  
S. Lecklitner ◽  
E. A. Liechty

The purpose of the present investigation was to study the effect of 7 days of uterine blood flow reduction on fetal growth. Reduction in uterine blood flow was accomplished by external occlusion of the terminal aorta in 20 pregnant sheep. Linear growth was monitored daily by means of a crown-rump length measuring device. The deliveries of oxygen, glucose, and lactate to the fetus, as well as their uptakes by the fetus, were determined before and after 7 days of uterine blood flow reduction and correlated with rates of fetal growth. Identical studies were conducted in nine control animals. Uterine blood flow reduction resulted in a significant decrease in fetal oxygen delivery and fetal arterial oxygen content. Linear growth rate decreased by 38% in the occluded animals during hypoxemia. In addition, there was a 20% reduction in daily weight gain in occluded animals compared with controls. There were no differences in the uptakes of oxygen, glucose, and lactate by the fetus. Positive correlations were found between linear growth rate and fetal arterial oxygen content (r2 = 0.25, P = 0.0001) and between linear growth rate and fetal oxygen delivery (r2 = 0.21, P = 0.0006). The correlations between linear growth rate and fetal oxygenation provide strong evidence of the central role of oxygen in the regulation of fetal growth.

1979 ◽  
Vol 135 (5) ◽  
pp. 637-646 ◽  
Author(s):  
Louis L.H. Peeters ◽  
Roger E. Sheldon ◽  
M. Douglas Jones ◽  
Edgar L. Makowski ◽  
Giacomo Meschia

2005 ◽  
Vol 21 (s2) ◽  
pp. 55-59 ◽  
Author(s):  
J. Hata ◽  
T. Kamada ◽  
N. Manabe ◽  
H. Kusunoki ◽  
D. Kamino ◽  
...  

1993 ◽  
Vol 67 (6) ◽  
pp. 922-934 ◽  
Author(s):  
Robert J. Elias ◽  
Dong-Jin Lee

Microborings in the Late Ordovician tabulate corals Catenipora rubra (a halysitid) and Manipora amicarum (a cateniform nonhalysitid) and in an epizoic solitary rugose coral differ from nearly all of those previously reported in Paleozoic corals. These microborings were formed within the coralla by endolithic algae and fungi located beneath living polyps. Comparable structures in the Late Ordovician tabulate Quepora ?agglomeratiformis (a halysitid) represent algal microborings, not spicules, and halysitids are corals, not sponges as suggested by Kaźmierczak (1989).Endolithic algae in cateniform tabulates relied primarily on light entering through the outer walls of the ranks rather than through the polyps; lacunae within coralla permitted appropriate levels of light to reach many corallites. The direction of boring was determined by corallum microstructure and possibly also by the distribution of organic matter within the skeleton. There is an apparent inverse correlation between boring activity and coral growth rate.The location and relative abundance of pyritized microborings within calcareous coralla can be established quantitatively and objectively from electron microprobe determinations of weight percent sulfur along appropriate traverses of the coral skeleton. The distribution of such microborings in Catenipora rubra and Manipora amicarum is comparable to algal banding in modern corals; this is the first report of such banding in the interiors of Paleozoic corals. Change in the intensity of boring within each corallum was evidently a response to variation in the linear growth rate of the coral, or to fluctuation in an environmental factor (perhaps light intensity) that could control both algal activity and growth rate in these corals. Change in the algal boring intensity and linear growth rate of the coral was generally but not always seasonal and usually but not invariably associated with change in the density of coral skeletal deposition.Cyclic bands of boring abundance maxima within fossil colonial corals provide a measure of annual linear growth comparable to the widely accepted method based on skeletal density bands. Algal bands are more sporadically developed than density bands within and among coralla, thus increasing the difficulty of interpretation. Fluctuations in the abundance of algal microborings apparently provide a detailed record of changes in the linear growth rate of colonies and of individuals within colonies. Combined analyses of microboring abundance and skeletal density will contribute significantly to our understanding of the biological and environmental factors involved in endolithic activity and coral growth.


2019 ◽  
Vol 83 ◽  
pp. 63-72 ◽  
Author(s):  
Colette N. Miller ◽  
Urmila P. Kodavanti ◽  
Erica J. Stewart ◽  
Mette Schaldweiler ◽  
Judy H. Richards ◽  
...  

Author(s):  
Yusuke SHIMIZU ◽  
Susumu ISHIKAWA ◽  
Hideki MISHIMA ◽  
Yuki MATSUNAGA ◽  
Yuki NISHIHARA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document