Possible nicotinic receptor-mediated modulation of synaptic transmission in nucleus of the solitary tract

1997 ◽  
Vol 272 (3) ◽  
pp. R869-R873
Author(s):  
T. Shiraki ◽  
A. Toyoda ◽  
H. Sugino ◽  
A. Hori ◽  
S. Kobayashi

Signal transmission from afferent nerves to neurons in the nucleus of the solitary tract (NTS) may be mediated partially by nicotinic acetylcholine receptors (nAChRs). Here, we investigated nAChR-mediated signal transmission using rat NTS slices. First, we characterized nAChRs by obtaining patch-clamp recordings from NTS neuronal cell bodies. Under whole cell voltage-clamp conditions at -60 mV, application of nicotine induced an inward current, and this effect was blocked by hexamethonium. In outside-out patch recordings, nicotine was seen to induce a hexamethonium-sensitive single-channel current. Second, we investigated nAChR-mediated signal transmission. Fast synaptic transmission mediated by nAChRs was not detected. The action of diffusible acetylcholine (ACh) on nAChRs was then tested using the outside-out patches excised from NTS neurons as probes for ACh. When the patch was placed at a distance of 20-30 microm from the cell body, single-channel currents were recorded, and these were inhibited by hexamethonium. The frequency of channel opening was increased by high-extracellular potassium concentration solution suggesting the voltage-dependent release ofACh that acts on nAChRs. These results suggested that nAChR-mediated signal transmission from sensory afferents to NTS neurons is in part mediated by diffusible ACh.

2014 ◽  
Vol 145 (1) ◽  
pp. 23-45 ◽  
Author(s):  
Alessandro Marabelli ◽  
Remigijus Lape ◽  
Lucia Sivilotti

Prokaryotic channels, such as Erwinia chrysanthemi ligand-gated ion channel (ELIC) and Gloeobacter violaceus ligand-gated ion channel, give key structural information for the pentameric ligand-gated ion channel family, which includes nicotinic acetylcholine receptors. ELIC, a cationic channel from E. chrysanthemi, is particularly suitable for single-channel recording because of its high conductance. Here, we report on the kinetic properties of ELIC channels expressed in human embryonic kidney 293 cells. Single-channel currents elicited by the full agonist propylamine (0.5–50 mM) in outside-out patches at −60 mV were analyzed by direct maximum likelihood fitting of kinetic schemes to the idealized data. Several mechanisms were tested, and their adequacy was judged by comparing the predictions of the best fit obtained with the observable features of the experimental data. These included open-/shut-time distributions and the time course of macroscopic propylamine-activated currents elicited by fast theta-tube applications (50–600 ms, 1–50 mM, −100 mV). Related eukaryotic channels, such as glycine and nicotinic receptors, when fully liganded open with high efficacy to a single open state, reached via a preopening intermediate. The simplest adequate description of their activation, the “Flip” model, assumes a concerted transition to a single intermediate state at high agonist concentration. In contrast, ELIC open-time distributions at saturating propylamine showed multiple components. Thus, more than one open state must be accessible to the fully liganded channel. The “Primed” model allows opening from multiple fully liganded intermediates. The best fits of this type of model showed that ELIC maximum open probability (99%) is reached when at least two and probably three molecules of agonist have bound to the channel. The overall efficacy with which the fully liganded channel opens was ∼102 (∼20 for α1β glycine channels). The microscopic affinity for the agonist increased as the channel activated, from 7 mM for the resting state to 0.15 mM for the partially activated intermediate state.


1988 ◽  
Vol 135 (1) ◽  
pp. 193-214 ◽  
Author(s):  
B. N. Christensen ◽  
Y. Larmet ◽  
T. Shimahara ◽  
D. Beadle ◽  
Y. Pichon

Neurones isolated from embryonic cockroach brains were maintained in culture for up to 8 weeks. A single patch electrode was used to record voltage changes in response to injected current, membrane ionic currents under whole-cell voltage-clamp conditions or single-channel currents from isolated membrane patches. The voltage changes in response to injected current that depolarized the cell indicated increases in membrane permeability to calcium and potassium. These observations were confirmed using a voltage clamp. The potassium current observed in the youngest cultures turned on with a delay and was blocked by tetraethylammonium (TEA) and 4-aminopyridine (4-AP). Two kinds of decrease in the outward potassium current were observed. One may be associated with extracellular potassium accumulation, inactivation of the potassium channel or inactivation of a calcium channel. The other appears to be a voltage-dependent inactivation. The magnitude of the calcium permeability appeared to increase as the cultures developed, being most prominent in cultures more than 2 weeks old. Single-channel conductance measured from an analysis of records from six isolated membrane patches ranged from 15 to 110 pS. Except for one channel, the probability of the channels being open did not change appreciably with membrane potential. Our results suggest that much of the increase in potassium permeability may be due an increase in intracellular calcium level.


2019 ◽  
Vol 316 (1) ◽  
pp. R38-R49
Author(s):  
Stephen J. Page ◽  
Mingyan Zhu ◽  
Suzanne M. Appleyard

Nicotine is an addictive drug that has broad effects throughout the brain. One site of action is the nucleus of the solitary tract (NTS), where nicotine initiates a stress response and modulates cardiovascular and gastric function through nicotinic acetylcholine receptors (nAChRs). Catecholamine (CA) neurons in the NTS influence stress and gastric and cardiovascular reflexes, making them potential mediators of nicotine’s effects; however nicotine’s effect on these neurons is unknown. Here, we determined nicotine’s actions on NTS-CA neurons by use of patch-clamp techniques in brain slices from transgenic mice expressing enhanced green fluorescent protein driven by the tyrosine hydroxylase promoter (TH-EGFP). Picospritzing nicotine both induced a direct inward current and increased the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) in NTS-CA neurons, effects blocked by nonselective nAChR antagonists TMPH and MLA. The increase in sEPSC frequency was mimicked by nAChRα7 agonist AR-R17779 and blocked by nAChRα7 antagonist MG624. AR-R17779 also increased the firing of TH-EGFP neurons, an effect dependent on glutamate inputs, as it was blocked by the glutamate antagonist NBQX. In contrast, the nicotine-induced current was mimicked by nAChRα4β2 agonist RJR2403 and blocked by nAChRα4β2 antagonist DHβE. RJR2403 also increased the firing rate of TH-EGFP neurons independently of glutamate. Finally, both somatodendritic and sEPSC nicotine responses from NTS-CA neurons were larger in nicotine-dependent mice that had under gone spontaneous nicotine withdrawal. These results demonstrate that 1) nicotine activates NTS-CA neurons both directly, by inducing a direct current, and indirectly, by increasing glutamate inputs, and 2) NTS-CA nicotine responsiveness is altered during nicotine withdrawal.


2002 ◽  
Vol 88 (5) ◽  
pp. 2736-2744 ◽  
Author(s):  
David D. Kline ◽  
Kristin N. Takacs ◽  
Eckhard Ficker ◽  
Diana L. Kunze

10.1152/jn.00224.2002. Dopamine (DA) modulates the cardiorespiratory reflex by peripheral and central mechanisms. The aim of this study was to examine the role of DA in synaptic transmission of the nucleus tractus solitarius (NTS), the major integration site for cardiopulmonary reflexes. To examine DA's role, we used whole cell, voltage-clamp recordings in a rat horizontal brain stem slice. Solitary tract stimulation evoked excitatory postsynaptic currents (EPSCs) that were reduced to 70 ± 5% of control by DA (100 μM). The reduction in EPSCs by DA was accompanied by a decrease in the paired pulse depression ratio with little or no change in input resistance or EPSC decay, suggesting a presynaptic mechanism. The D1-like agonist SKF 38393 Br (30 μM) did not alter EPSC amplitude, whereas the D2-like agonist, quinpirole HCl (30 μM), depressed EPSCs to 73 ± 4% of control. The D2-like receptor antagonist, sulpiride (20 μM), abolished DA modulation of EPSCs. Most importantly, sulpiride alone increased EPSCs to 131 ± 10% of control, suggesting a tonic D2-like modulation of synaptic transmission in the NTS. Examination of spontaneous EPSCs revealed DA reversibly decreased the frequency of events from 9.4 ± 2.2 to 6.2 ± 1.4 Hz. Sulpiride, however, did not alter spontaneous events. Immunohistochemistry of NTS slices demonstrated that D2 receptors colocalized with synaptophysin and substance P, confirming a presynaptic distribution. D2 receptors also localized to cultured petrosal neurons, the soma of presynaptic afferent fibers. In the petrosal neurons, D2 was found in cells that were TH-immunopositive, suggesting they were chemoreceptor afferent fibers. These results demonstrate that DA tonically modulates synaptic activity between afferent sensory fibers and secondary relay neurons in the NTS via a presynaptic D2-like mechanism.


2002 ◽  
Vol 120 (3) ◽  
pp. 369-393 ◽  
Author(s):  
Richard J. Prince ◽  
Richard A. Pennington ◽  
Steven M. Sine

We used single-channel kinetic analysis to study the inhibitory effects of tacrine on human adult nicotinic receptors (nAChRs) transiently expressed in HEK 293 cells. Single channel recording from cell-attached patches revealed concentration- and voltage-dependent decreases in mean channel open probability produced by tacrine (IC50 4.6 μM at −70 mV, 1.6 μM at −150 mV). Two main effects of tacrine were apparent in the open- and closed-time distributions. First, the mean channel open time decreased with increasing tacrine concentration in a voltage-dependent manner, strongly suggesting that tacrine acts as an open-channel blocker. Second, tacrine produced a new class of closings whose duration increased with increasing tacrine concentration. Concentration dependence of closed-times is not predicted by sequential models of channel block, suggesting that tacrine blocks the nAChR by an unusual mechanism. To probe tacrine's mechanism of action we fitted a series of kinetic models to our data using maximum likelihood techniques. Models incorporating two tacrine binding sites in the open receptor channel gave dramatically improved fits to our data compared with the classic sequential model, which contains one site. Improved fits relative to the sequential model were also obtained with schemes incorporating a binding site in the closed channel, but only if it is assumed that the channel cannot gate with tacrine bound. Overall, the best description of our data was obtained with a model that combined two binding sites in the open channel with a single site in the closed state of the receptor.


2016 ◽  
Vol 149 (1) ◽  
pp. 85-103 ◽  
Author(s):  
Shaweta Gupta ◽  
Srirupa Chakraborty ◽  
Ridhima Vij ◽  
Anthony Auerbach

Nicotinic acetylcholine receptors are allosteric proteins that generate membrane currents by isomerizing (“gating”) between resting and active conformations under the influence of neurotransmitters. Here, to explore the mechanisms that link the transmitter-binding sites (TBSs) with the distant gate, we use mutant cycle analyses to measure coupling between residue pairs, phi value analyses to sequence domain rearrangements, and current simulations to reproduce a microsecond shut component (“flip”) apparent in single-channel recordings. Significant interactions between amino acids separated by >15 Å are rare; an exception is between the αM2–M3 linkers and the TBSs that are ∼30 Å apart. Linker residues also make significant, local interactions within and between subunits. Phi value analyses indicate that without agonists, the linker is the first region in the protein to reach the gating transition state. Together, the phi pattern and flip component suggest that a complete, resting↔active allosteric transition involves passage through four brief intermediate states, with brief shut events arising from sojourns in all or a subset. We derive energy landscapes for gating with and without agonists, and propose a structure-based model in which resting→active starts with spontaneous rearrangements of the M2–M3 linkers and TBSs. These conformational changes stabilize a twisted extracellular domain to promote transmembrane helix tilting, gate dilation, and the formation of a “bubble” that collapses to initiate ion conduction. The energy landscapes suggest that twisting is the most energetically unfavorable step in the resting→active conformational change and that the rate-limiting step in the reverse process is bubble formation.


2000 ◽  
Vol 278 (2) ◽  
pp. H548-H557 ◽  
Author(s):  
Tao Zeng ◽  
Glenna C. L. Bett ◽  
Frederick Sachs

Mechanoelectric transduction can initiate cardiac arrhythmias. To examine the origins of this effect at the cellular level, we made whole cell voltage-clamp recordings from acutely isolated rat ventricular myocytes under controlled strain. Longitudinal stretch elicited noninactivating inward cationic currents that increased the action potential duration. These stretch-activated currents could be blocked by 100 μM Gd3+ but not by octanol. The current-voltage relationship was nearly linear, with a reversal potential of approximately −6 mV in normal Tyrode solution. Current density varied with sarcomere length (SL) according to I (pA/pF) = 8.3 − 5.0SL (μm). Repeated attempts to record single channel currents from stretch-activated ion channels failed, in accord with the absence of such data from the literature. The inability to record single channel currents may be a result of channels being located on internal membranes such as the T tubules or, possibly, inactivation of the channels by the mechanics of patch formation.


Sign in / Sign up

Export Citation Format

Share Document