scholarly journals Intrapericardiac injections of algogenic chemicals excite primate C1-C2 spinothalamic tract neurons

2000 ◽  
Vol 279 (2) ◽  
pp. R560-R568 ◽  
Author(s):  
Margaret J. Chandler ◽  
Jianhua Zhang ◽  
Chao Qin ◽  
Yu Yuan ◽  
Robert D. Foreman

Extracellular potentials of 38 C1-C2 spinothalamic tract (STT) neurons in anesthetized monkeys ( Macaca fascicularis) were examined for responses to intrapericardiac injections of an algogenic chemical mixture (adenosine, 10−3 M; bradykinin, prostaglandin E2, serotonin, histamine, each 10−5 M). Chemical stimulation of cardiac/pericardiac receptors increased activity of 21 cells, decreased activity of 5 cells, and did not change activity of 12 cells. Cells excited by chemical stimuli received input from noxious mechanical stimulation of somatic fields; most receptive fields included the neck, inferior jaw, or head areas. Nerve ablations in 11 cells excited by intrapericardiac chemicals showed that cardiac input activated by algogenic chemicals traveled primarily in vagal afferent fibers to C1-C2 segments; phrenic or cardiopulmonary sympathetic inputs were predominant in 2 of 11 cells. These results supported the concept that activation of cardiac vagal afferents might lead to the production of referred pain sensation in somatic fields innervated from high cervical segments.

1998 ◽  
Vol 80 (2) ◽  
pp. 628-637 ◽  
Author(s):  
Margaret J. Chandler ◽  
Jianhua Zhang ◽  
Robert D. Foreman

Chandler, Margaret J., Jianhua Zhang, and Robert D. Foreman. Cardiopulmonary sympathetic input excites primate cuneothalamic neurons: comparison with spinothalamic tract neurons. J. Neurophysiol. 80: 628–637, 1998. Stimulation of cardiopulmonary sympathetic afferent fibers excites thoracic and cervical spinothalamic tract (STT) cells that respond primarily to noxious somatic stimuli. Neurons in dorsal column nuclei respond primarily to innocuous somatic inputs, but noxious stimulation of pelvic viscera activates gracile neurons. The purpose of this study was to compare effects of thoracic visceral input on cuneothalamic and STT neurons. Stellate ganglia of 17 anesthetized monkeys ( Macaca fascicularis) were stimulated electrically to activate cardiopulmonary sympathetic afferent fibers. Somatic receptive fields were manipulated with brush, tap, and pinch stimuli. Extracellular discharge rate was recorded for neurons antidromically activated from ventroposterolateral (VPL) thalamus. Stimulation of the ipsilateral stellate ganglion increased activity of 17 of 38 cuneothalamic neurons and of 1 gracilothalamic neuron with an upper body somatic field. Spinal cord transections showed that cardiopulmonary input to cuneothalamic neurons traveled in ipsilateral dorsal column and probably in dorsolateral funiculus. One of eight gracilothalamic neurons with lower body fields was inhibited by cardiopulmonary input, and none were excited. Stimulation of the ipsilateral stellate ganglion increased activity in 10 of 10 T3–T4 STT neurons. Evoked discharge rates, latencies to activation and durations of peristimulus histogram peaks were significantly less for cuneothalamic neurons compared with STT neurons. Furthermore, additional long latency peaks of activity developed in histograms for 6 of 10 STT neurons but never for cuneothalamic neurons. Contralateral cardiopulmonary sympathetic input did not excite cuneothalamic neurons but increased activity of 7 of 10 T3–T4 STT neurons. Most cuneothalamic neurons (24 of 31 cells tested) responded primarily to innocuous somatic stimuli, whereas STT neurons responded primarily or solely to noxious pinch of somatic fields. Neurons that responded to cardiopulmonary input most often had somatic fields located on proximal arm and chest. Results of this study showed that cardiopulmonary input was transmitted in dorsal pathways to cuneate nucleus and then to VPL thalamus and confirmed that STT neurons transmit nociceptive cardiopulmonary input to VPL thalamus. Differences in neuronal responses to noxious stimulation of cardiopulmonary sympathetic afferent fibers suggest that dorsal and ventrolateral pathways to VPL thalamus play different roles in the transmission and integration of nociceptive cardiac information.


1985 ◽  
Vol 54 (1) ◽  
pp. 73-89 ◽  
Author(s):  
W. S. Ammons ◽  
M. N. Girardot ◽  
R. D. Foreman

Spinothalamic tract neurons projecting to medial thalamus (M-STT cells), ventral posterior lateral nucleus (VPL) of the thalamus (L-STT cells), or both thalamic regions (LM-STT cells) were studied in 19 monkeys anesthetized with alpha-chloralose. Twenty-seven M-STT cells were antidromically activated from nucleus centralis lateralis, nucleus centrum medianum, or the medial dorsal nucleus. Stimulation of VPL elicited antidromic responses from 22 cells and 13 cells were activated from both VPL and medial thalamus. Antidromic conduction velocities of M-STT cells were significantly slower than those of L-STT or LM-STT cells. M-STT cells were located in laminae I, IV, V, and VII with greater numbers found in the deepest laminae. L-STT cells were located mostly in lamina IV, whereas most LM-STT cells were found in lamina V. Twenty-four of 27 M-STT cells, all L-STT cells, and all LM-STT cells received input from both cardiopulmonary sympathetic and somatic afferent fibers. WDR cells were most common among the L-STT and LM-STT groups, whereas HT cells were the most common class in the M-STT cell group. Excitatory receptive fields of M-STT cells were large, and often bilateral. Receptive fields of L-STT cells were simple and never bilateral. Receptive fields of LM-STT cells could be similar to M-STT or L-STT cells. Thirty-three percent of the M-STT cells, 37% of the L-STT cells, and 62% of the LM-STT cells had inhibitory receptive fields. Inhibition was elicited most often by a noxious pinch of the hindlimbs. Sixteen of 23 (70%) M-STT cells received C-fiber cardiopulmonary sympathetic input in addition to A-delta-fiber input. The other 7 cells received only A-delta-fiber input. Only 45% of the L-STT cells and 38% of the LM-STT cells received both A-delta- and C-fiber inputs. The maximum number of spikes elicited by A-delta-input was related to segmental locations for L-STT cells with greatest responses in T2 and lesser responses in more caudal segments; however, no such trend was apparent for M-STT cells or for responses to C-fiber input for either group. Electrical stimulation of the left thoracic vagus nerve inhibited 7 of 18 M-STT cells, 10 of 16 L-STT cells, and 6 of 12 LM-STT cells. These results are the first description of visceral input to cells projecting to medial thalamus.(ABSTRACT TRUNCATED AT 400 WORDS)


1989 ◽  
Vol 61 (6) ◽  
pp. 1121-1130 ◽  
Author(s):  
W. S. Ammons

1. Spinothalamic tract (STT) neurons in the T10-L3 segments were studied for responses to renal and somatic stimuli. A total of 90 neurons was studied in 25 alpha-chloralose anesthetized monkeys (Macaca fascicularis). All neurons were antidromically activated from the ventral posterior lateral nucleus of the thalamus. 2. Sixty-two cells were excited by renal nerve stimulation and six inhibited. Probability of locating cells with renal input was greatest in T11-L1. Cells were located in laminae I and IV-VII; however, most were located in laminae V-VII. Antidromic latencies averaged 4.61 +/- 0.32 (SE) ms, whereas antidromic conduction velocities averaged 43.23 +/- 9.03 m/s. 3. Cells with excitatory renal input received A delta input only (36 cells) or A delta- and C-fiber inputs (26 cells). Stimulation of A delta renal afferent fibers evoked bursts of 1-10 spikes/stimulus [mean 3.6 +/- 0.9 spikes/stimulus] with onset latencies of 10.7 +/- 0.5 ms. Stimulation of C-fibers evoked 1.3 +/- 0.5 spikes/stimulus with onset latencies of 61.7 +/- 11.1 ms. Magnitude of responses to A delta-fiber stimulation was greatest in T12 and decreased both rostrally and caudally. Inhibitory responses to renal nerve stimulation required activation of renal C-fibers. 4. All cells that responded to stimulation of renal afferent fibers received convergent inputs from somatic structures. Forty-four cells were classified as wide dynamic range, 10 were high threshold, 12 were high-threshold cells with inhibitory input from hair, 2 were deep, and 2 were low threshold. Somatic receptive fields were large and located on the flank and abdomen and/or the upper hindlimb. Fourteen cells had inhibitory receptive fields located on the contralateral hindlimb or one of the forearms. 5. It is concluded that T11-L1 STT cells in the monkey respond reliably to renal nerve stimulation. Thoracolumbar STT cells may thus play a role in pain that results from renal disease. The locations of the somatic receptive fields of the cells suggest that they are responsible for the referral of renal pain to the flank and abdomen.


1992 ◽  
Vol 68 (5) ◽  
pp. 1575-1588 ◽  
Author(s):  
S. F. Hobbs ◽  
M. J. Chandler ◽  
D. C. Bolser ◽  
R. D. Foreman

1. Referred pain of visceral origin has three major characteristics: visceral pain is referred to somatic areas that are innervated from the same spinal segments as the diseased organ; visceral pain is referred to proximal body regions and not to distal body areas; and visceral pain is felt as deep pain and not as cutaneous pain. The neurophysiological basis for these phenomena is poorly understood. The purpose of this study was to examine the organization of viscerosomatic response characteristics of spinothalamic tract (STT) neurons in the rostral spinal cord. Interactions were determined among the following: 1) segmental location, 2) effects of input by cardiopulmonary sympathetic, greater splanchnic, lumbar sympathetic, and urinary bladder afferent fibers, 3) location of excitatory somatic field, e.g., hand, forearm, proximal arm, or chest, 4) magnitude of response to hair, skin, and deep mechanoreceptor afferent input, and 5) regional specificity of thalamic projection sites. 2. A total of 89 STT neurons in segments C3-T6 were characterized for responses to visceral and somatic stimuli. Neurons were activated antidromically from the contralateral ventroposterolateral oralis or caudalis nuclei of the thalamus. Cell responses to visceral and somatic stimuli were not different on the basis of the thalamic site of antidromic activation. Recording sites for 61 neurons were located histologically; 87% of lesion sites were located in laminae IV-VII or X. There was no relationship between response properties of the neurons and spinal laminar location. 3. Different responses to visceral stimuli were observed in three zones of the rostral spinal cord: C3-C6, C7-C8, and T1-T6. In C3-C6, urinary bladder distension (UBD) and electrical stimulation of greater splanchnic and lumbar sympathetic afferent fibers inhibited STT cells. Electrical stimulation of cardiopulmonary sympathetic afferents increased cell activity in C5 and C6 and either excited or inhibited STT cells in C3 and C4. In the cervical enlargement (C7-C8), STT cells generally were either inhibited or showed little response to stimulation of visceral afferent fibers. In T1-T6, input from greater splanchnic and cardiopulmonary sympathetic afferent nerves increased activity of STT cells. Lumbar sympathetic afferent input inhibited cells in T1-T2 and had little effect on cells in T3-T6, whereas UBD decreased cell activity in all segments studied. 4. In general, stimulation of somatic structures increased activity of STT neurons in segments that received primary afferent innervation from the excitatory somatic receptive field or in the segments immediately adjacent to these segments. Only input from the forelimb, especially the hand, markedly excited cells in C7 and C8.+


1994 ◽  
Vol 76 (6) ◽  
pp. 2672-2679 ◽  
Author(s):  
M. Tatar ◽  
G. Sant′Ambrogio ◽  
F. B. Sant′Ambrogio

Tussigenic sensitivity of laryngeal and tracheobronchial regions to mechanical and chemical stimuli was compared in 22 urethan-alpha-chloralose-anesthetized dogs. In addition, the contribution of myelinated and unmyelinated vagal fibers in mediating laryngeal and tracheobronchial cough was investigated. The intensity of cough was evaluated from changes in esophageal pressure. Whereas all mechanical stimulations and citric acid inhalations into tracheobronchial region elicited cough, only 56.7% of mechanical stimulation and 33.3% of citric acid challenges to larynx were effective. The intensity of tracheobronchial cough was significantly higher than that of laryngeal cough. When mechanical stimulation was conducted under visual control (bronchofiberscope), cough elicitability was found to be higher from tracheal bifurcation and main stem bronchi (62.5–87.5%) than from any laryngeal structure (0–42.9%). During partial block of vagal conduction (cooling to 6 degrees C), mechanical and citric acid tracheobronchial stimulations failed to elicit cough and mechanical laryngeal stimulation was effective only in 1 of 10 dogs. Intensity of cough was strongly decreased when mechanical stimulation followed capsaicin administration into trachea (0.3 ml; 100 micrograms/ml) or intravenously (10 micrograms/kg). We conclude that, in anesthetized dogs, stimulation of tracheobronchial region is more effective and prompt in eliciting cough than stimulation of larynx, myelinated vagal afferent fibers play an important role in mediating mechanically and citric acid-induced tracheobronchial cough and mechanically induced laryngeal cough, and stimulation of tracheobronchial and pulmonary capsaicin-sensitive receptors strongly inhibits mechanically induced cough.


1988 ◽  
Vol 59 (3) ◽  
pp. 886-907 ◽  
Author(s):  
D. G. Ferrington ◽  
J. W. Downie ◽  
W. D. Willis

1. Recordings were made from 67 neurons in the nucleus gracilis (NG) of anesthetized macaque monkeys. All of the cells were activated antidromically from the ventral posterior lateral (VPL) nucleus of the contralateral thalamus. Stimuli used to activate the cells orthodromically were graded innocuous and noxious mechanical stimuli, including sinusoidal vibration and thermal pulses. 2. The latencies of antidromic action potentials following stimulation in the VPL nucleus were significantly shorter for cells in the caudal compared with the rostral NG. The mean minimum afferent conduction velocity of the afferent conduction velocity of the afferent fibers exciting the NG cells was 52 m/s, as judged from the latencies of the cells to orthodromic volleys evoked by electrical stimulation of peripheral nerves. The overall conduction velocity of the pathway from peripheral nerve to thalamus was approximately 40 m/s. 3. Cutaneous receptive fields on the distal hindlimb usually occupied an area equivalent to much less than a single digit. However, a few cells had receptive fields up to or exceeding the area of the foot. 4. NG cells were classified by their responses to graded mechanical stimulation of the skin as low threshold (LT) or wide dynamic range (WDR). No high-threshold NG cells were found. A special subcategory of pressure-sensitive LT (SA) neurons was recognized. Many of these cells were maximally responsive to maintained indentation of the skin. The sample of NG cells differed from the population of primate spinothalamic and spinocervicothalamic pathways so far examined, in having a larger proportion of LT neurons and a smaller proportion of WDR cells. A few NG cells responded best to manipulation of subcutaneous tissue. 5. Discriminant analysis permitted the NG cells to be assigned to classes determined by a k-means cluster analysis of the responses of a reference set of 318 primate spinothalamic tract (STT) cells. There were four classes of cells based on normalized responses of individual neurons and another four classes based upon responses compared across the population of cells. The NG cells were allocated to the various categories in different proportions than either primate STT cells or spinocervicothalamic neurons, consistent with the view that the functional roles of these somatosensory pathways differ. 6. Some of the pressure-sensitive NG cells were excited when the skin was stretched, suggesting an input from type II slowly adapting (Ruffini) mechanoreceptors.(ABSTRACT TRUNCATED AT 400 WORDS)


1989 ◽  
Vol 62 (3) ◽  
pp. 778-788 ◽  
Author(s):  
W. S. Ammons

1. Experiments were performed to examine responses of spinothalamic tract (STT) neurons to distension of the renal pelvis. Nineteen monkeys (Macaca fascicularis) were anesthetized with alpha-chloralose, paralyzed, and artificially ventilated. Fifty-four STT neurons in the T11-L2 segments were studied. Each cell was excited by renal nerve stimulation and had a somatic receptive field in the left flank and/or the abdomen. 2. Distension of the left renal pelvis to 50 mmHg for 20-30 s increased activity of 40 STT neurons. Two types of responses were observed. Six cells responded rapidly to the increase in renal pelvic pressure. Thereafter activity of these cells completely adapted. The other 34 cells also responded rapidly to the distension: however, the subsequent adaptation was not complete. Average activity before distension was 13 +/- 1 (SE) spikes/s. Distension increased activity to a peak of 42 +/- 3 spikes/s. Mean activity just before the end of the distension was 27 +/- 3 spikes/s. 3. The pelvic pressure-cell response relation was determined for 16 cells. Only one cell responded to a pressure of 20 mmHg. Three responded to 30 mmHg, and all others responded to 40 mmHg and higher. The average response threshold was 32 +/- 1 mmHg. Peak responses increased as distending pressure increased from 40-80 mmHg. Responses to a pressure of 100 mmHg were no greater than to 80 mmHg. Adapted levels of activity were also a function of distending pressure in the 40-80 mmHg range. 4. Probability of responses was unrelated to somatic input. However, cells with A delta- and C-fiber renal input were significantly more likely to respond to renal pelvic distension than cells with only A delta-renal input. Magnitude of responses to a pressure of 50 mmHg was not related to the type of renal input to the cells; however, among the cells tested at all pressures, cells with A delta- and C-fiber input had significantly greater responses to pressures of 80 and 100 mmHg. 5. Cells were studied in laminae I and IV-VII: responses were unrelated to laminar location. None of the 6 cells located in L2 responded to renal pelvic distension; 8 of 12 in L1 responded; 24 of 28 in T12 responded; and all 8 cells in T11 responded. 6. Stimulation of inhibitory receptive fields on the right hindlimb reduced activity of four cells to a significantly greater extent during pelvic distension than before pelvic distension.(ABSTRACT TRUNCATED AT 400 WORDS)


2001 ◽  
Vol 85 (4) ◽  
pp. 1522-1532 ◽  
Author(s):  
Chao Qin ◽  
Margaret J. Chandler ◽  
Kenneth E. Miller ◽  
Robert D. Foreman

Electrical stimulation of vagal afferents or cardiopulmonary sympathetic afferent fibers excites C1–C2spinal neurons. The purposes of this study were to compare the responses of superficial (depth <0.35 mm) and deeper C1–C2 spinal neurons to noxious chemical stimulation of cardiac afferents and determine the relative contribution of vagal and sympathetic afferent pathways for transmission of noxious cardiac afferent input to C1–C2 neurons. Extracellular potentials of single C1–C2 neurons were recorded in pentobarbital anesthetized and paralyzed male rats. A catheter was placed in the pericardial sac to administer a mixture of algogenic chemicals (0.2 ml) that contained adenosine (10− 3 M), bradykinin, histamine, serotonin, and prostaglandin E2(10− 5 M each). Intrapericardial chemicals changed the activity of 20/106 (19%) C1–C2 spinal neurons in the superficial laminae, whereas 76/147 (52%) deeper neurons responded to cardiac noxious input ( P < 0.01). Of 96 neurons responsive to cardiac inputs, 48 (50%) were excited (E), 41 (43%) were inhibited (I), and 7 were excited/inhibited (E-I) by intrapericardial chemicals. E or I neurons responsive to intrapericardial chemicals were subdivided into two groups: short-lasting (SL) and long-lasting (LL) response patterns. In superficial gray matter, excitatory responses to cardiac inputs were more likely to be LL-E than SL-E neurons. Mechanical stimulation of the somatic field from the head, neck, and shoulder areas excited 85 of 95 (89%) C1–C2 spinal neurons that responded to intrapericardial chemicals; 31 neurons were classified as wide dynamic range, 49 were high threshold, 5 responded only to joint movement, and no neuron was classified as low threshold. For superficial neurons, 53% had small somatic fields and 21% had bilateral fields. In contrast, 31% of the deeper neurons had small somatic fields and 46% had bilateral fields. Ipsilateral cervical vagotomy interrupted cardiac noxious input to 8/30 (6 E, 2 I) neurons; sequential transection of the contralateral cervical vagus nerve (bilateral vagotomy) eliminated the responses to intrapericardial chemicals in 4/22 (3 E, 1 I) neurons. Spinal transection at C6–C7 segments to interrupt effects of sympathetic afferent input abolished responses to cardiac input in 10/10 (7 E, 3 I) neurons that still responded after bilateral vagotomy. Results of this study support the concept that C1–C2 superficial and deeper spinal neurons play a role in integrating cardiac noxious inputs that travel in both the cervical vagal and/or thoracic sympathetic afferent nerves.


1993 ◽  
Vol 70 (5) ◽  
pp. 1950-1961 ◽  
Author(s):  
A. R. Evans ◽  
R. W. Blair

1. Various intensities, frequencies, and pulse widths of electrical stimulation of vagal afferent fibers were used to assess the responses of 87 medullary raphe neurons to vagal afferent fiber input in pentobarbital sodium-anesthetized, barodenervated paralyzed cats. Thirty-seven neurons were antidromically activated from the T2-T3 segments of the thoracic spinal cord, and 40 neurons could not be antidromically activated. Neurons were located in the nucleus raphe magnus (79%) and the nucleus raphe obscurus (15%). The remaining 6% of the neurons were not found; however, their locations were comparable in depth and position on the midline with other neurons in the same animals whose locations were identified. 2. The responses of 60 neurons to electrical stimulation of vagal afferent fibers were classified as excitatory (38%), inhibitory (24%), or mixed, (7%). The mixed responses were characterized by excitation at one frequency or intensity and inhibition at another frequency or intensity. The remaining 27 neurons did not clearly respond. 3. The excitatory responses to electrical stimulation of the cervical vagus nerve were intensity and frequency dependent. Inhibitory responses were frequency dependent at lower frequencies of stimulation and both frequency and intensity dependent at higher frequencies. The mixed responses were frequency dependent. Overall, longer pulse widths produced significantly greater responses than shorter pulse widths. 4. Thirty-three neurons were tested for responses to chemical stimulation of vagal afferents with intra-atrial injections of three doses of veratridine. Twenty-one percent were excited, 55% were inhibited, and 6% had mixed responses. For the mixed responses, excitation occurred at one dose and inhibition at another. The remaining 18% of the neurons were unresponsive to veratridine. The excitatory responses were dose dependent, but the inhibitory responses were not. Three doses of phenybiguanide (PBG) were also used to chemically activate vagal afferents in 27 neurons. Eleven percent were excited, 44% were inhibited, and 4% had mixed responses. The remaining 41% were unresponsive to PBG. The excitatory and inhibitory responses were dose dependent. 5. When comparing responses in projection and nonprojection neurons, inhibition was seen significantly more often in projection neurons and excitation in nonprojection neurons. Sixty-three percent of the neurons inhibited by electrical stimulation were raphespinal neurons, and 78% of the neurons excited by vagal stimulation were nonprojection neurons. Similar observations were made with the responses to chemical activation of the vagus. 6. Neurons with lower spontaneous discharge rates were more often excited by vagal stimulation and neurons with higher rates were more often inhibited.(ABSTRACT TRUNCATED AT 400 WORDS)


2019 ◽  
Vol 317 (6) ◽  
pp. R814-R817
Author(s):  
Juan Guardiola ◽  
Mohamed Saad ◽  
Jerry Yu

In our present studies, we seek to determine whether increased osmolarity stimulates deflation-activated receptors (DARs). In anesthetized, open-chest, and mechanically ventilated rabbits, we recorded single-unit activities from typical slowly adapting receptors (SARs; responding only to lung inflation) and DAR-containing SARs (DAR-SARs; responding to both lung inflation and deflation) and identified their receptive fields in the lung. We examined responses of these two groups of pulmonary sensory units to direct injection of hypertonic saline (8.1% sodium chloride; 9-fold in tonicity) into the receptive fields. Hypertonic saline decreased the activity in most SAR units from 40.3 ± 5.4 to 34.8 ± 4.7 imp/s ( P < 0.05, n = 12). In contrast, it increased the activity in DAR-SAR units quickly and significantly from 15.9 ± 2.2 to 43.4 ± 10.0 imp/s ( P < 0.01, n = 10). Many units initially had increased activity, mainly in the deflation phase. DAR-SAR activities largely returned to the control level 30 s after injection. Since hypertonic saline stimulated DAR-SAR units but not SAR units, we conclude that hypertonic saline activates DARs.


Sign in / Sign up

Export Citation Format

Share Document