Differential responses of regional sympathetic activity and blood flow to visceral afferent stimulation

2001 ◽  
Vol 280 (6) ◽  
pp. R1781-R1789 ◽  
Author(s):  
Hui-Lin Pan ◽  
Dwight D. Deal ◽  
Zemin Xu ◽  
Shao-Rui Chen

The sympathetic nervous system is essential for the cardiovascular responses to stimulation of visceral afferents. It remains unclear how the reflex-evoked sympathetic output is distributed to different vascular beds to initiate the hemodynamic changes. In the present study, we examined changes in regional sympathetic nerve activity and blood flows in anesthetized cats. Cardiovascular reflexes were induced by either electrical stimulation of the right splanchnic nerve or application of 10 μg/ml of bradykinin to the gallbladder. Blood flows were measured using colored microspheres or the Transonic flow meter system. Sympathetic efferent activity was recorded from the left splanchnic, inferior cardiac, and tibial nerves. Stimulation of visceral afferents decreased significantly blood flows in the celiac (from 49 ± 4 to 25 ± 3 ml/min) and superior mesenteric (from 35 ± 4 to 23 ± 2 ml/min) arteries, and the vascular resistance in the splanchnic bed was profoundly increased. Consistently, stimulation of visceral afferents decreased tissue blood flows in the splanchnic organs. By contrast, activation of visceral afferents increased significantly blood flows in the coronary artery and portal vein but did not alter the vascular resistance of the femoral artery. Furthermore, stimulation of visceral afferents increased significantly sympathetic efferent activity in the splanchnic (182 ± 44%) but not in the inferior cardiac and tibial nerves. Therefore, this study provides substantial new evidence that stimulation of abdominal visceral afferents differentially induces sympathetic outflow to the splanchnic vascular bed.

1996 ◽  
Vol 270 (3) ◽  
pp. H849-H856 ◽  
Author(s):  
H. L. Pan ◽  
Z. B. Zeisse ◽  
J. C. Longhurst

Stimulation of abdominal sympathetic visceral afferents reflexly excites the cardiovascular system. The present study examined the role of summation of afferent input in this reflex. Single-unit activity of A delta- and C-fiber afferents was recorded from the right thoracic sympathetic chain in anesthetized cats to determine the relationship between intensities of electrical stimulation and the types of nerve fibers within the right greater splanchnic nerve. The differential effect of cooling on A delta- and C-fiber axons in the sympathetic chain also was examined by recording single-unit afferent activity. Reflex cardiovascular responses were induced by electrical stimulation of the central cut end of the right greater splanchnic nerve. We observed that the numbers of A delta and C fibers activated by electrical stimulation were proportional to the intensity of stimulation. However, neither local cooling nor intensity of stimulation provided a means to separate A delta and C fibers contained in the sympathetic chain. The results demonstrate that the magnitude of excitatory cardiovascular reflexes is frequency dependent and is related directly to intensity of electrical stimulation, suggesting that both adequate discharge frequency of the afferent and sufficient numbers of afferents recruited are crucial factors for full expression of reflex cardiovascular responses.


1984 ◽  
Vol 247 (3) ◽  
pp. R552-R559 ◽  
Author(s):  
J. C. Longhurst ◽  
M. P. Kaufman ◽  
G. A. Ordway ◽  
T. I. Musch

Stimulation of sensory endings in abdominal visceral organs with capsaicin or bradykinin reflexly increases heart rate, blood pressure, and myocardial contractility through afferent pathways in splanchnic nerves. To determine the afferent fiber types stimulated, we recorded impulses in the right splanchnic nerve in 12 anesthetized cats after either injecting capsaicin (50-200 micrograms) or bradykinin (6.5-20 micrograms) into the descending thoracic aorta or applying pledgets soaked with these chemicals to a visceral organ. We studied 26 A- and 23 C-fibers, each with one receptive field in the mesentery, stomach, duodenum, jejunum, ileum, pancreas, liver, gallbladder, or porta hepatis. Endings of C-fibers generally were mechanically insensitive, whereas endings of A-fibers were mechanically sensitive. After a latency of 10.7 +/- 3.3 s, capsaicin increased the activity of 10 of 26 A-fibers from 2.0 +/- 0.9 to 9.9 +/- 2.6 impulses/s and 23 of 23 C-fibers from 0.2 +/- 0.1 to 13.0 +/- 1.6 impulses/s after a latency of 3.3 +/- 0.9 s. Bradykinin increased the activity of 15 of 26 A-fibers from 2.6 +/- 0.9 to 7.4 +/- 1.5 impulses/s after a latency of 17.0 +/- 1.7 s and 16 of 22 C-fibers from 0.4 +/- 0.2 to 4.7 +/- 1.2 impulses/s after a latency of 19.0 +/- 1.9 s. Capsaicin stimulated significantly more C- than A-fibers (P less than 0.001) and a significantly greater fraction of C-fibers than did bradykinin (P less than 0.007). We conclude that stimulation of splanchnic C-fiber afferents by capsaicin and both A- and C-fiber afferents by bradykinin is primarily responsible for the reflex cardiovascular responses caused by these chemicals.


1994 ◽  
Vol 267 (6) ◽  
pp. H2398-H2406 ◽  
Author(s):  
H. L. Pan ◽  
G. L. Stahl ◽  
S. V. Rendig ◽  
O. A. Carretero ◽  
J. C. Longhurst

Abdominal ischemia and reperfusion reflexly activate the cardiovascular system. In the present study, we evaluated the role of endogenously produced bradykinin (BK) in the stimulation of ischemically sensitive visceral afferents. Single-unit activity of abdominal visceral C fiber afferents was recorded from the right thoracic sympathetic chain of anesthetized cats during 5 min of abdominal ischemia. Abdominal ischemia increased the portal venous plasma BK level from 49 +/- 10 to 188 +/- 66 pg/ml (P < 0.05). Injection of BK (1 microgram/kg ia) into the descending aorta significantly increased impulse activity (0.88 +/- 0.16 impulses/s) of 10 C fibers, whereas a kinin B1-receptor agonist, des-Arg9-BK (1 microgram/kg), did not alter the discharge rate. Inhibition of kininase II activity with captopril (4 mg/kg i.v.) potentiated impulse activity of 14 ischemically sensitive C fibers (0.44 +/- 0.09 vs. precaptopril, 0.33 +/- 0.08 impulses/s; P < 0.05). In addition, a kinin B2-receptor antagonist (NPC-17731; 40 micrograms/kg i.v.) attenuated activity of afferents during ischemia (0.39 +/- 0.08 vs. pre-NPC-17731, 0.72 +/- 0.13 impulses/s; P < 0.05) and eliminated the response of 10 C fibers to BK. Another kinin B2-receptor antagonist, Hoe-140 (30 micrograms/kg iv), had similar inhibitory effects on six other ischemically sensitive C fibers. In 15 separate cats treated with aspirin (50 mg/kg i.v.), Hoe-140 (30 micrograms/kg i.v.) attenuated impulse activity of only 3 of 16 ischemically sensitive C fibers. These data suggest that BK produced during abdominal ischemia contributes to the stimulation of ischemically sensitive visceral C fiber afferents through kinin B2 receptors.(ABSTRACT TRUNCATED AT 250 WORDS)


1983 ◽  
Vol 244 (6) ◽  
pp. H852-H859 ◽  
Author(s):  
K. H. Berecek ◽  
R. L. Webb ◽  
M. J. Brody

Central vasopressin (VP) may modulate the functional activity of specific neuronal systems involved in cardiovascular regulation. To test this hypothesis we compared cardiovascular (CV) responses to electrical stimulation of the anteroventral region of the third ventricle (AV3V) in Brattleboro rats homozygous for diabetes insipidus (DI), in heterozygous DI rats (DI-HZ) and in normal Long-Evans rats (LE). We also studied the effects of peripheral and intracerebroventricular (ivt) treatment of DI rats with VP and treatment of LE rats with an antipressor blocker of VP on cardiovascular responses to AV3V stimulation. Stimulation of the AV3V region in anesthetized LE rats produced a frequency-dependent increase in renal (RVR) and mesenteric vascular resistance (MVR), a decrease in hindquarter vascular resistance (HQVR), and a decrease in arterial pressure (AP) and heart rate (HR). DI and DI-HZ rats showed significantly greater decreases in AP and HR and lesser changes in RVR, MVR, and HQVR. The deficiency in vasoconstriction in DI rats appeared to be centrally mediated inasmuch as vascular responses to peripherally administered phenylephrine and nerve stimulation were comparable in LE and DI rats. Treatment of DI rats with VP peripherally improved CV responses to AV3V stimulation. An even greater improvement in CV responses to AV3V stimulation was obtained when DI were given ivt infusion of VP. Finally, following intravenous administration of an antipressor VP blocker LE rats showed a greater decrease in AP and HR and lesser resistance changes in response to AV3V stimulation. Our data suggest that cardiovascular responses elicited from stimulation of the AV3V region may depend, in part, on a central vasopressin mechanism.


1993 ◽  
Vol 265 (2) ◽  
pp. H633-H641 ◽  
Author(s):  
V. K. Malhotra ◽  
A. Kachroo ◽  
H. N. Sapru

Small doses of epinephrine (0.008, 0.05, and 0.1 pmol, i.e., 20-nl volumes of 0.40, 2.5, and 5 microM solutions) produced a dose-dependent increase in heart rate when micro-injected into the right intermediolateral column (IML) at T2 spinal level. These effects were mediated via alpha 1-adrenergic receptors because prazosin blocked them. The presence of alpha 1-adrenergic receptors at this site was confirmed by microinjections of phenylephrine (a specific agonist for these receptors); phenylephrine elicited tachycardia. Larger doses of epinephrine (320, 2,000, and 3,200 pmol, i.e., 20-nl volumes of 16, 100, and 160 mM solutions) caused bradycardia when microinjected into the IML. These effects were mediated via alpha 2-adrenergic receptors because idazoxan blocked them. The presence of alpha 2-adrenergic receptors at this site was confirmed by microinjections of clonidine (a specific agonist for these receptors); clonidine elicited bradycardia. Injections of the vehicle (20 nl of normal saline containing 0.3% ascorbic acid, pH 7.4) did not evoke a response. Epinephrine, prazosin, or idazoxan did not alter the responses to L-glutamate. None of the doses of epinephrine elicited any response when injected intravenously. The aforementioned results provide pharmacological evidence for the presence of alpha 1- and alpha 2-adrenergic receptors in the IML at T2. Thus a basis is provided for investigating the role, if any, of alpha-adrenergic receptors in the IML in mediating cardiovascular responses elicited by the stimulation of different brain stem areas.


1982 ◽  
Vol 243 (5) ◽  
pp. R537-R545 ◽  
Author(s):  
D. R. Jones ◽  
W. K. Milsom ◽  
G. R. Gabbott

Using techniques of vascular isolation and subsequent perfusion we have investigated the effects of altering blood gas tensions, in the cerebral and carotid body circulations, on some cardiovascular responses to diving in unanesthetized ducks. After denervating the right carotid body, perfusion of the innervated left carotid body with hyperoxic blood significantly reduced diving bradycardia and reduced the increase in hindlimb vascular resistance (HLVR) in 1-min dives compared with dives in which the innervated carotid body was autoperfused. Denervation of systemic arterial baroreceptors reduced the fall in heart rate (HR) and increased the rise in HLVR in all dives. Cross-perfusion of the head, from a donor with blood of normal blood gas tensions, did not significantly affect HR or HLVR in 2-min dives compared with dives in which the head was autoperfused. however, cross-perfusing the cerebral circulation with blood of elevated PaCO2 caused significantly greater increases in HLVR than when high PaCO2 only affected the peripheral circulation. We conclude that peripheral chemoreceptors cause virtually all the bradycardia in the later stages of a dive but only about one-half the increase in HLVR, a significant contribution comes from the stimulation of central chemoreceptors with blood of high PaCO2.


1993 ◽  
Vol 264 (6) ◽  
pp. H1890-H1895
Author(s):  
G. R. Hageman ◽  
T. Simor

Cocaine abuse causes autonomic and cardiovascular effects that may be life threatening. Attenuation of cocaine-induced seizures has been produced by the noncompetitive antagonist of the N-methyl-D-aspartate receptor channel complex, dizocilpine. The purpose of the present study was, first, to determine effects of dizocilpine on the incidence of pacing-induced ventricular arrhythmias and, second, to evaluate the effects of dizocilpine on cocaine-induced depression of sympathetic efferent activity to the heart. Adult dogs were anesthetized and instrumented for blood pressure and an electrocardiogram. After vagotomy and thoracotomy, electrodes and strain gauges were sutured onto the right atrium and ventricle. A left thoracic sympathetic efferent nerve was isolated and stimulated for analysis of the innervation pattern. Arrhythmias were induced with programmed electrical stimulation of the heart before and during left cardiac sympathetic efferent nerve stimulation. The control incidence of induced arrhythmias was only 2%, which increased to 21% during left sympathetic stimulation. Cocaine (2 mg/kg iv) significantly increased these to 11 and 42%, respectively. Dizocilpine (0.5 mg/kg iv) reduced the incidence of induced ventricular arrhythmias to 2% with cocaine (P < 0.05) and to 19% with cocaine and left sympathetic stimulation (P < 0.01). One or two sympathetic efferent cardiac nerves were stimulated to evaluate innervation patterns. These nerves were severed and prepared for recording multifiber efferent neurograms. Nerve traffic was analyzed by counting positive spikes for 15 s. Control activities were normalized at 100%. Within 6 min, cocaine (2 mg/kg iv) reduced the sympathetic efferent activity to 83 +/- 4% of control (n = 14 nerves).(ABSTRACT TRUNCATED AT 250 WORDS)


1987 ◽  
Vol 253 (3) ◽  
pp. H556-H567 ◽  
Author(s):  
J. C. Longhurst ◽  
L. E. Dittman

Ischemia of abdominal visceral organs is known to reflexly stimulate the cardiovascular system. The purpose of this study was to determine which of several potential chemical stimuli present during ischemia either directly stimulate or sensitize these afferents to respond to ischemia. Impulse activity was recorded in the right splanchnic nerve of anesthetized cats. First, we determined whether the afferents were ischemically sensitive by subjecting them to 2-6 min of regional ischemia through occlusion of the descending thoracic aorta. We then examined the afferents' response to systemic hypoxia by decreasing the inspired O2 and arterial injection of bradykinin or the prostaglandins (PG) E2, PGF2 alpha, or prostacyclin (PGI2). Sixty-one percent of the rapidly adapting A fibers and 47% of the C fibers were stimulated by ischemia, and of these, 78% of the A fibers and 44% of the C fibers tested were stimulated by hypoxia. The latency of response to hypoxia (60 +/- 12 s) was significantly longer than the chemoreceptor-induced pressor response (45 +/- 11 s). Each afferent stimulated by ischemia and/or hypoxia innervated a receptive field in the pylorus, intestine, porta hepatis, gallbladder or biliary tract, pancreas, or mesentery. Ninety percent of the ischemically sensitive A fibers and 80% of the ischemically sensitive C fibers responded to bradykinin, whereas 40% of the A fibers and 62% of the C fibers responded to PGE2, PGF2 alpha, or PGI2. Several endings responded to ischemia or hypoxia only after bradykinin or PGI2 had been injected. Thus approximately 50% of slowly adapting A and C fiber endings in abdominal visceral organs respond, or can be sensitized by bradykinin or PGI2 to respond, to ischemia and/or hypoxia. However, they are not as sensitive to hypoxia as carotid and aortic body chemoreceptors, since they respond well after the chemoreceptor-induced pressor response.


2010 ◽  
Vol 299 (5) ◽  
pp. R1269-R1278 ◽  
Author(s):  
Susan M. Barman ◽  
Hakan S. Orer

This study was designed to build on past work from this laboratory by testing the hypothesis that medullary lateral tegmental field (LTF) neurons play a critical role in mediating sympathoexcitatory responses to activation of sympathetic afferent fibers. We studied the effects of microinjection of N-methyl-d-aspartate (NMDA) or non-NMDA receptor antagonists or muscimol bilaterally into the LTF on the area under the curve of the computer-averaged sympathoexcitatory potential in the right inferior cardiac nerve elicited by short trains of stimuli applied to afferent fibers in the left inferior cardiac or left splanchnic nerve (CN, SN) of baroreceptor-denervated and vagotomized cats anesthetized with a mixture of diallylbarbiturate and urethane. In contrast to our hypothesis, sympathoexcitatory responses to stimulation of CN ( n = 5–7) or SN ( n = 4–7) afferent fibers were not significantly affected by these procedures. We then determined whether the rostral and caudal ventrolateral medulla (RVLM, CVLM) and nucleus tractus solitarius (NTS) were involved in mediating these reflexes. Blockade of non-NMDA, but not NMDA, receptors in the RVLM significantly reduced the area under the curve of the sympathoexcitatory responses to electrical stimulation of either CN ( P = 0.0110; n = 6) or SN ( P = 0.0131; n = 5) afferent fibers. Neither blockade of excitatory amino acid receptors nor chemical inactivation of CVLM or NTS significantly affected the responses. These data show that activation of non-NMDA receptors in the RVLM is a critical step in mediating the sympatho-sympathetic reflex.


Sign in / Sign up

Export Citation Format

Share Document