scholarly journals A MAPP Network study: overexpression of tumor necrosis factor-α in mouse urothelium mimics interstitial cystitis

2018 ◽  
Vol 315 (1) ◽  
pp. F36-F44 ◽  
Author(s):  
Wenbin Yang ◽  
Timothy J. Searl ◽  
Ryan Yaggie ◽  
Anthony J. Schaeffer ◽  
David J. Klumpp

Interstitial cystitis/bladder pain syndrome is a chronic bladder condition associated with pain and voiding dysfunction that is often regarded as a neurogenic cystitis. Patient symptoms are correlated with the presence of urothelial lesions. We previously characterized a murine neurogenic cystitis model that recapitulates mast cell accumulation and urothelial lesions, and these events were dependent on TNF. To further explore the role of TNF in bladder inflammation and function, we generated a transgenic mouse model with chronic TNF overexpression in urothelium under the control of the uroplakin II (UPII) promoter. Transgenic mouse lines were maintained by backcross onto wild-type C57BL/6J mice and evaluated for pelvic tactile allodynia as a measure of visceral pain, urinary function, and urothelial lesions. TNF mRNA and protein were expressed at greater levels in bladders of UPII-TNF mice than in those of wild-type mice. UPII-TNF mice showed significantly increased urinary frequency and decreased void volume. UPII-TNF mice had increased urothelial apoptosis and loss of urothelial integrity consistent with urothelial lesions. Overexpression of TNF was also associated with pelvic tactile allodynia. Consistent with these findings, UPII-TNF mice exhibited increased bladder afferent activity in response to stretch ex vivo. In summary, UPII-TNF mice display significant pelvic pain, voiding dysfunction, urothelial lesions, and sensory input. Thus UPII-TNF mice are a model for characterizing mechanisms of interstitial cystitis symptoms and evaluating therapies.

2020 ◽  
Author(s):  
Luke Grundy ◽  
Ashlee Caldwell ◽  
Sonia Garcia-Caraballo ◽  
David Grundy ◽  
Nick J. Spencer ◽  
...  

AbstractUnderstanding the sensory mechanisms innervating the bladder is paramount to developing efficacious treatments for chronic bladder hypersensitivity conditions. The contribution of Mas-gene-related G protein-coupled receptors (Mrgpr) to bladder signalling is currently unknown. Here we show in mice with single-cell RT-PCR that sub-populations of dorsal root ganglion (DRG) neurons innervating the mouse bladder express MrgprA3 (14%) and MrgprC11 (38%), either individually or in combination, with high levels of co-expression with Trpv1 (81-89%). Calcium imaging studies demonstrated MrgprA3 and MrgprC11 agonists (chloroquine, BAM8-22 and neuropeptide FF) activated sub-populations of bladder-innervating DRG neurons, showing functional evidence of co-expression between MrgprA3, MrgprC11 and TRPV1. In ex vivo bladder-nerve preparations chloroquine, BAM8-22 and neuropeptide FF all evoked mechanical hypersensitivity in sub-populations (20-41%) of bladder afferents. These effects were absent in recordings from Mrgpr-clusterΔ−/− mice. In vitro whole-cell patch clamp recordings showed that application of an MrgprA3/C11 agonist cocktail induced neuronal hyper-excitability in 44% of bladder-innervating DRG neurons. Finally, in vivo instillation of an MrgprA3/C11 agonist cocktail into the bladder of wild-type mice induced a significant activation of dorsal horn neurons within the lumbosacral spinal cord, as quantified by pERK-immunoreactivity. This MrgprA3/C11 agonist-induced activation was particularly apparent within the superficial dorsal horn and the sacral parasympathetic nuclei of wild-type, but not Mrgpr-clusterΔ−/− mice. This study demonstrates, for the first time, functional expression of MrgprA3 and MrgprC11 in bladder afferents. Activation of these receptors is not required for normal bladder function but does trigger hypersensitivity to distension, a critically valuable factor for therapeutic target development.Significance statementDetermining how bladder afferents become sensitized is the first step in finding effective treatments for common urological disorders such as overactive bladder and interstitial cystitis/bladder pain syndrome. Here we show that two of the key receptors, MrgprA3 and MrgprC11, that mediate itch from the skin are also expressed on afferents innervating the bladder. Activation of these receptors results in sensitization of bladder afferents, resulting in sensory signals being sent into the spinal cord that prematurely indicate bladder fullness. Targeting bladder afferents expressing MrgprA3 or MrgprC11 and preventing their sensitisation may provide a novel approach for treating overactive bladder and interstitial cystitis/bladder pain syndrome.


2016 ◽  
Vol 310 (7) ◽  
pp. F628-F636 ◽  
Author(s):  
A. Lenore Ackerman ◽  
Forrest C. Jellison ◽  
Una J. Lee ◽  
Sylvie Bradesi ◽  
Larissa V. Rodríguez

Psychological stress exacerbates interstitial cystitis/bladder pain syndrome (IC/BPS), a lower urinary tract pain disorder characterized by increased urinary frequency and bladder pain. Glutamate (Glu) is the primary excitatory neurotransmitter modulating nociceptive networks. Glt1, an astrocytic transporter responsible for Glu clearance, is critical in pain signaling termination. We sought to examine the role of Glt1 in stress-induced bladder hyperalgesia and urinary frequency. In a model of stress-induced bladder hyperalgesia with high construct validity to human IC/BPS, female Wistar-Kyoto (WKY) rats were subjected to 10-day water avoidance stress (WAS). Referred hyperalgesia and tactile allodynia were assessed after WAS with von Frey filaments. After behavioral testing, we assessed Glt1 expression in the spinal cord by immunoblotting. We also examined the influence of dihydrokainate (DHK) and ceftriaxone (CTX), which downregulate and upregulate Glt1, respectively, on pain development. Rats exposed to WAS demonstrated increased voiding frequency, increased colonic motility, anxiety-like behaviors, and enhanced visceral hyperalgesia and tactile allodynia. This behavioral phenotype correlated with decreases in spinal Glt1 expression. Exogenous Glt1 downregulation by DHK resulted in hyperalgesia similar to that following WAS. Exogenous Glt1 upregulation via intraperitoneal CTX injection inhibited the development of and reversed preexisting pain and voiding dysfunction induced by WAS. Repeated psychological stress results in voiding dysfunction and hyperalgesia that correlate with altered central nervous system glutamate processing. Manipulation of Glu handling altered the allodynia developing after psychological stress, implicating Glu neurotransmission in the pathophysiology of bladder hyperalgesia in the WAS model of IC/BPS.


2021 ◽  
Vol 2 ◽  
Author(s):  
Céline Augé ◽  
Lilian Basso ◽  
Catherine Blanpied ◽  
Nathalie Vergnolle ◽  
Xavier Gamé ◽  
...  

Current analgesic treatments for Interstitial Cystitis/Bladder Pain Syndrome (IC/BPS) are limited. Here, we propose a novel antinociceptive strategy exploiting the opioid-mediated analgesic properties of T lymphocytes to relieve from bladder pain. In a chronic model of IC/BPS in rats, we show that a secondary T cell response against intravesically administered ovalbumin prevents from visceral pain in OVA-primed animals. The analgesic effect is associated with the recruitment of T lymphocytes within the inflamed mucosa and is reversed by naloxone-methiodide, a peripheral opioid receptor antagonist. Similarly, intravesical instillation of BCG or tetanus toxoid antigens in vaccinated rats protects from pain in the same model. We show opioid-dependent analgesic properties of local vaccine antigen recall in a preclinical rat model of chronic cystitis. Since BCG bladder instillation is regularly used in humans (as anticancer therapy), our results open it as a new therapeutic positioning for a pain management indication for IC/BPS patients.


Sign in / Sign up

Export Citation Format

Share Document