scholarly journals SGK1-dependent ENaC processing and trafficking in mice with high dietary K intake and elevated aldosterone

2017 ◽  
Vol 312 (1) ◽  
pp. F65-F76 ◽  
Author(s):  
Lei Yang ◽  
Gustavo Frindt ◽  
Florian Lang ◽  
Dietmar Kuhl ◽  
Volker Vallon ◽  
...  

We examined renal Na and K transporters in mice with deletions in the gene encoding the aldosterone-induced protein SGK1. The knockout mice were hyperkalemic, and had altered expression of the subunits of the epithelial Na channel (ENaC). The kidneys showed decreased expression of the cleaved forms of the γENaC subunit, and the fully glycosylated form of the βENaC subunits when animals were fed a high-K diet. Knockout animals treated with exogenous aldosterone also had reduced subunit processing and diminished surface expression of βENaC and γENaC. Expression of the three upstream Na transporters NHE3, NKCC2, and NCC was reduced in both wild-type and knockout mice in response to K loading. The activity of ENaC measured as whole cell amiloride-sensitive current ( INa) in principal cells of the cortical collecting duct (CCD) was minimal under control conditions but was increased by a high-K diet to a similar extent in knockout and wild-type animals. INa in the connecting tubule also increased similarly in the two genotypes in response to exogenous aldosterone administration. The activities of both ROMK channels in principal cells and BK channels in intercalated cells of the CCD were unaffected by the deletion of SGK1. Acute treatment of animals with amiloride produced similar increases in Na excretion and decreases in K excretion in the two genotypes. The absence of changes in ENaC activity suggests compensation for decreased surface expression. Altered K balance in animals lacking SGK1 may reflect defects in ENaC-independent K excretion.

2017 ◽  
Vol 312 (1) ◽  
pp. F143-F156 ◽  
Author(s):  
Rolando Carrisoza-Gaytán ◽  
Lijun Wang ◽  
Carlos Schreck ◽  
Thomas R. Kleyman ◽  
Wen-Hui Wang ◽  
...  

Within the CCD of the distal nephron of the rabbit, the BK (maxi K) channel mediates Ca2+- and/or stretch-dependent flow-induced K+ secretion (FIKS) and contributes to K+ adaptation in response to dietary K+ loading. An unresolved question is whether BK channels in intercalated cells (ICs) and/or principal cells (PCs) in the CCD mediate these K+ secretory processes. In support of a role for ICs in FIKS is the higher density of immunoreactive apical BKα (pore-forming subunit) and functional BK channel activity than detected in PCs, and an increase in IC BKα expression in response to a high-K+ diet. PCs possess a single apical cilium which has been proposed to serve as a mechanosensor; direct manipulation of cilia leads to increases in cell Ca2+ concentration, albeit of nonciliary origin. Immunoperfusion of isolated and fixed CCDs isolated from control K+-fed rabbits with channel subunit-specific antibodies revealed colocalization of immunodetectable BKα- and β1-subunits in cilia as well as on the apical membrane of cilia-expressing PCs. Ciliary BK channels were more easily detected in rabbits fed a low-K+ vs. high-K+ diet. Single-channel recordings of cilia revealed K+ channels with conductance and kinetics typical of the BK channel. The observations that 1) FIKS was preserved but 2) the high-amplitude Ca2+ peak elicited by flow was reduced in microperfused CCDs subject to pharmacological deciliation suggest that cilia BK channels do not contribute to K+ secretion in this segment, but that cilia serve as modulators of cell signaling.


2006 ◽  
Vol 291 (3) ◽  
pp. F683-F693 ◽  
Author(s):  
Zuhal Ergonul ◽  
Gustavo Frindt ◽  
Lawrence G. Palmer

Antibodies directed against subunits of the epithelial Na channel (ENaC) were used together with electrophysiological measurements in the cortical collecting duct to investigate the processing of the proteins in rat kidney with changes in Na or K intake. When animals were maintained on a low-Na diet for 7–9 days, the abundance of two forms of the α-subunit, with apparent masses of 85 and 30 kDa, increased. Salt restriction also increased the abundance of the β-subunit and produced an endoglycosidase H (Endo H)-resistant pool of this subunit. The abundance of the 90-kDa form of the γ-subunit decreased, whereas that of a 70-kDa form increased and this peptide also exhibited Endo H-resistant glycosylation. These changes in α- and γ-subunits were correlated with increases in Na conductance elicited by a 4-h infusion with aldosterone. Changes in all three subunits were correlated with decreases in Na conductance when Na-deprived animals drank saline for 5 h. We conclude that ENaC subunits are mainly in an immature form in salt-replete rats. With Na depletion, the subunits mature in a process that involves proteolytic cleavage and further glycosylation. Similar changes occurred in α- and γ- but not β-subunits when animals were treated with exogenous aldosterone, and in β- and γ- but not α-subunits when animals were fed a high-K diet. Changes in the processing and maturation of the channels occur rapidly enough to be involved in the daily regulation of ENaC activity and Na reabsorption by the kidney.


2008 ◽  
Vol 131 (6) ◽  
pp. 617-627 ◽  
Author(s):  
Gustavo Frindt ◽  
Zuhal Ergonul ◽  
Lawrence G. Palmer

Expression of epithelial Na channel (ENaC) protein in the apical membrane of rat kidney tubules was assessed by biotinylation of the extracellular surfaces of renal cells and by membrane fractionation. Rat kidneys were perfused in situ with solutions containing NHS-biotin, a cell-impermeant biotin derivative that attaches covalently to free amino groups on lysines. Membranes were solubilized and labeled proteins were isolated using neutravidin beads, and surface β and γENaC subunits were assayed by immunoblot. Surface αENaC was assessed by membrane fractionation. Most of the γENaC at the surface was smaller in molecular mass than the full-length subunit, consistent with cleavage of this subunit in the extracellular moiety close to the first transmembrane domains. Insensitivity of the channels to trypsin, measured in principal cells of the cortical collecting duct by whole-cell patch-clamp recording, corroborated this finding. ENaC subunits could be detected at the surface under all physiological conditions. However increasing the levels of aldosterone in the animals by feeding a low-Na diet or infusing them directly with hormone via osmotic minipumps for 1 wk before surface labeling increased the expression of the subunits at the surface by two- to fivefold. Salt repletion of Na-deprived animals for 5 h decreased surface expression. Changes in the surface density of ENaC subunits contribute significantly to the regulation of Na transport in renal cells by mineralocorticoid hormone, but do not fully account for increased channel activity.


2014 ◽  
Vol 306 (3) ◽  
pp. F309-F320 ◽  
Author(s):  
Hui-Fang Bao ◽  
Tiffany L. Thai ◽  
Qiang Yue ◽  
He-Ping Ma ◽  
Amity F. Eaton ◽  
...  

The epithelial Na channel (ENaC) is negatively regulated by protein kinase C (PKC) as shown using PKC activators in a cell culture model. To determine whether PKCα influences ENaC activity in vivo, we examined the regulation of ENaC in renal tubules from PKCα−/− mice. Cortical collecting ducts were dissected and split open, and the exposed principal cells were subjected to cell-attached patch clamp. In the absence of PKCα, the open probability ( Po) of ENaC was increased three-fold vs. wild-type SV129 mice (0.52 ± 0.04 vs. 0.17 ± 0.02). The number of channels per patch was also increased. Using confocal microscopy, we observed an increase in membrane localization of α-, β-, and γ-subunits of ENaC in principal cells in the cortical collecting ducts of PKCα−/− mice compared with wild-type mice. To confirm this increase, one kidney from each animal was perfused with biotin, and membrane protein was pulled down with streptavidin. The nonbiotinylated kidney was used to assess total protein. While total ENaC protein did not change in PKCα−/− mice, membrane localization of all the ENaC subunits was increased. The increase in membrane ENaC could be explained by the observation that ERK1/2 phosphorylation was decreased in the knockout mice. These results imply a reduction in ENaC membrane accumulation and Po by PKCα in vivo. The PKC-mediated increase in ENaC activity was associated with an increase in blood pressure in knockout mice fed a high-salt diet.


2002 ◽  
Vol 282 (1) ◽  
pp. F133-F143 ◽  
Author(s):  
Snezana Petrovic ◽  
Zachary Spicer ◽  
Tracey Greeley ◽  
Gary E Shull ◽  
Manoocher Soleimani

The intercalated (IC) cells of the cortical collecting duct (CCD) are important to acid-base homeostasis by secreting acid and reabsorbing bicarbonate. Acid secretion is mediated predominantly by apical membrane Schering (SCH-28080)-sensitive H+-K+- ATPase (HKA) and bafilomycin-sensitive H+-ATPase. The SCH-28080-sensitive HKA is believed to be the gastric HKA (HKAg). Here we examined apical membrane potassium-dependent proton secretion in IC cells of wild-type HKAg (+/+) and HKAg knockout (−/−) mice to determine relative contribution of HKAg to luminal proton secretion. The results demonstrated that HKAg (−/−) and wild-type mice had comparable rates of potassium-dependent proton secretion, with HKAg (−/−) mice having 100% of K+-dependent H+ secretion vs. wild-type mice. Potassium-dependent proton secretion was resistant to ouabain and SCH-28080 in HKAg knockout mice but was sensitive to SCH-28080 in wild-type animals. Northern hybridizations did not demonstrate any upregulation of colonic HKA in HKAg knockout mice. These data indicate the presence of a previously unrecognized K+-dependent SCH-28080 and ouabain-insensitive proton secretory mechanism in the cortical collecting tubule that may play an important role in acid-base homeostasis.


2007 ◽  
Vol 292 (4) ◽  
pp. F1190-F1196 ◽  
Author(s):  
Gustavo Frindt ◽  
Zuhal Ergonul ◽  
Lawrence G. Palmer

The expression and activity of epithelial Na+ channels (ENaC) in the medullary collecting duct of the rat kidney were examined using a combination of whole cell patch-clamp measurements of amiloride-sensitive currents ( INa) in split-open tubules and Western blot analysis of α-, β-, and γ-ENaC proteins. In the outer medullary collecting duct, amiloride-sensitive currents were undetectable in principal cells from control animals but were robust when rats were treated with aldosterone ( INa = 960 ± 160 pA/cell) or fed a low-Na diet ( INa = 440 ± 120 pA/cell). In both cases, the currents were similar to those measured in principal cells of the cortical collecting duct from the same animals. In the inner medullary collecting duct, currents were much lower, averaging 120 ± 20 pA/cell in aldosterone-treated rats. Immunoblots showed that all three ENaC subunits were expressed in the cortex, outer medulla, and inner medulla of the rat kidney. When rats were fed a low-Na diet for 1 wk, similar changes in α- and γ-ENaC occurred in all three regions of the kidney; the amounts of full-length as well as putative cleaved α-ENaC protein increased, and the fraction of γ-ENaC protein in the cleaved state increased at the expense of the full-length protein. The appearance of a presumably fully glycosylated form of β-ENaC in Na-depleted animals was observed mainly in the outer and inner medulla. These findings suggest that the capability of hormone-regulated, channel-mediated Na reabsorption by the nephron extends at least into the outer medullary collecting duct.


2020 ◽  
Vol 9 (7) ◽  
Author(s):  
Peng Wu ◽  
Zhong‐Xiuzi Gao ◽  
Dan‐Dan Zhang ◽  
Xin‐Peng Duan ◽  
Andrew S. Terker ◽  
...  

Background Angiotensin II stimulates epithelial Na + channel (ENaC) by aldosterone‐independent mechanism. We now test the effect of angiotensin II on ENaC in the distal convoluted tubule (DCT) and cortical collecting duct (CCD) of wild‐type (WT) and kidney‐specific mineralocorticoid receptor knockout mice (KS‐MR‐KO). Methods and Results We used electrophysiological, immunoblotting and renal‐clearance methods to examine the effect of angiotensin II on ENaC in KS‐MR‐KO and wild‐type mice. High K + intake stimulated ENaC in the late DCT/early connecting tubule (DCT2/CNT) and in the CCD whereas low sodium intake stimulated ENaC in the CCD but not in the DCT2/CNT. The deletion of MR abolished the stimulatory effect of high K + and low sodium intake on ENaC, partially inhibited ENaC in DCT2/CNT but almost abolished ENaC activity in the CCD. Application of losartan inhibited ENaC only in DCT2/CNT of both wild‐type and KS‐MR‐KO mice but not in the CCD. Angiotensin II infusion for 3 days has a larger stimulatory effect on ENaC in the DCT2/CNT than in the CCD. Three lines of evidence indicate that angiotensin II can stimulate ENaC by MR‐independent mechanism: (1) angiotensin II perfusion augmented ENaC expression in KS‐MR‐KO mice; (2) angiotensin II stimulated ENaC in the DCT2/CNT but to a lesser degree in the CCD in KS‐MR‐KO mice; (3) angiotensin II infusion augmented benzamil‐induced natriuresis, increased the renal K + excretion and corrected hyperkalemia of KS‐MR‐KO mice. Conclusions Angiotensin II‐induced stimulation of ENaC occurs mainly in the DCT2/CNT and to a lesser degree in the CCD and MR plays a dominant role in determining ENaC activity in the CCD but to a lesser degree in the DCT2/CNT.


2013 ◽  
Vol 304 (4) ◽  
pp. F397-F402 ◽  
Author(s):  
Chih-Jen Cheng ◽  
Michel Baum ◽  
Chou-Long Huang

Kidney-specific with-no-lysine kinase 1 (KS-WNK1) is a kinase-deficient variant of WNK1 that is expressed exclusively in the kidney. It is abundantly expressed in the distal convoluted tubule (DCT) and to a lesser extent in the cortical thick ascending limb (cTAL), connecting tubule, and cortical collecting duct (CCD). KS-WNK1 inhibits Na+-K+-2Cl−- and sodium chloride cotransporter-mediated Na+ reabsorption in cTAL and DCT, respectively. Here, we investigated the role of KS-WNK1 in regulating Na+ and K+ transport in CCD using in vitro microperfusion of tubules isolated from KS-WNK1 knockout mice and control wild-type littermates. Because baseline K+ secretion and Na+ reabsorption were negligible in mouse CCD, we studied tubules isolated from mice fed a high-K+ diet for 2 wk. Compared with that in wild-type tubules, K+ secretion was reduced in KS-WNK1 knockout CCD perfused at a low luminal fluid rate of ∼1.5 nl/min. Na+ reabsorption and the lumen-negative transepithelial potential difference were also lower in the KS-WNK1 knockout CCD compared with control CCD. Increasing the perfusion rate to ∼5.5 nl/min stimulated K+ secretion in the wild-type as well as knockout CCD. The magnitudes of flow-stimulated increase in K+ secretion were similar in wild-type and knockout CCD. Maxi-K+ channel inhibitor iberiotoxin had no effect on K+ secretion when tubules were perfused at ∼1.5 nl/min, but completely abrogated the flow-dependent increase in K+ secretion at ∼5.5 nl/min. These findings support the notion that KS-WNK1 stimulates ROMK-mediated K+ secretion, but not flow-dependent K+ secretion mediated by maxi-K+ channels in CCD. In addition, KS-WNK1 plays a role in regulating Na+ transport in the CCD.


2012 ◽  
Vol 303 (5) ◽  
pp. F667-F673 ◽  
Author(s):  
Chih-Jen Cheng ◽  
Thao Truong ◽  
Michel Baum ◽  
Chou-Long Huang

Kidney-specific WNK1 (KS-WNK1) is a variant of full-length WNK1. Previous studies have reported that KS-WNK1 is predominantly expressed in the distal convoluted tubule (DCT) where it regulates sodium-chloride cotransporter. The role of KS-WNK1 in other nephron segments is less clear. Here, we measured the expression of KS-WNK1 transcript in microdissected renal tubules and found that KS-WNK1 was most abundant in the DCT, followed by cortical thick ascending limb (cTAL), connecting tubule, and cortical collecting duct. A high K+ diet enhanced the expression of KS-WNK1 in the DCT and cTAL, selectively. It has been reported that a high-K diet suppresses Na+ reabsorption in TAL. To understand the role of KS-WNK1 in Na+ transport in cTAL and the regulation by dietary K+, we examined Na+ reabsorption using in vitro microperfusion in cTAL isolated from KS-WNK1-knockout mice and wild-type littermates fed either a control-K+ or high-K+ diet. Furosemide-sensitive Na+ reabsorption in cTAL was higher in KS-WNK1-knockout (KO) mice than in wild-type. A high-K+ diet inhibited Na+ reabsorption in cTAL from wild-type mice, but the inhibition was eliminated in KS-WNK1-KO mice. We further examined the role of KS-WNK1 using transgenic mice that overexpress KS-WNK1. Na+ reabsorption in cTAL was lower in transgenic than in wild-type mice. In whole animal clearance studies, a high-K+ diet increased daily urine volume and urinary Na+ and K+ excretion in wild-type mice, which was blunted in KS-WNK1-KO mice. Thus KS-WNK1 inhibits Na+ reabsorption in cTAL and mediates the inhibition of Na+ reabsorption in the segment by a high-K diet.


Sign in / Sign up

Export Citation Format

Share Document