scholarly journals Effect of hydrogen peroxide on ROMK channels in the cortical collecting duct

2007 ◽  
Vol 292 (4) ◽  
pp. F1151-F1156 ◽  
Author(s):  
Yuan Wei ◽  
ZhiJian Wang ◽  
Elisa Babilonia ◽  
Hyacinth Sterling ◽  
Peng Sun ◽  
...  

We used the patch-clamp technique to study the effect of H2O2 on the apical ROMK-like small-conductance K (SK) channel in the cortical collecting duct (CCD). The addition of H2O2 decreased the activity of the SK channels and the inhibitory effect of H2O2 was larger in the CCD from rats on a K-deficient diet than that from rats on a normal-K or a high-K diet. However, application of H2O2 did not inhibit the SK channels in inside-out patches. This suggests that the H2O2-mediated inhibition of SK channels was not due to direct oxidation of the SK channel protein. Because a previous study showed that H2O2 stimulated the expression of Src family protein tyrosine kinase (PTK) which inhibited SK channels ( 3 ), we explored the role of PTK in mediating the effect of H2O2 on SK channels. The application of H2O2 stimulated the activity of endogenous PTK in M-1 cells and increased tyrosine phosphorylation of ROMK in HEK293 cells transfected with GFP-ROMK1 and c-Src. However, blockade of PTK only attenuated but did not completely abolish the inhibitory effect of H2O2 on SK channels. Since H2O2 has also been demonstrated to activate mitogen-activated protein kinase, P38, and ERK ( 3 ), we examined the role of P38 and ERK in mediating the effect of H2O2 on SK channels. Similar to blockade of PTK, suppression of P38 and ERK did not completely abolish the H2O2-induced inhibition of SK channels. However, combined use of ERK, P38, and PTK inhibitors completely abolished the effect of H2O2 on SK channels. Also, treatment of the CCDs with concanavalin A, an agent which has been shown to inhibit endocytosis ( 19 ), abolished the inhibitory effect of H2O2. We conclude that addition of H2O2 inhibited SK channels by stimulating PTK activity, P38, and ERK in the CCD and that H2O2 enhances the internalization of the SK channels.

2005 ◽  
Vol 289 (5) ◽  
pp. F1065-F1071 ◽  
Author(s):  
Yuan Wei ◽  
Elisa Babilonia ◽  
Hyacinth Sterling ◽  
Yan Jin ◽  
Wen-Hui Wang

We used the patch-clamp technique to examine the effect of DOCA treatment (2 mg/kg) on the apical small-conductance K (SK) channels, epithelial Na channels (ENaC), and the basolateral 18-pS K channels in the cortical collecting duct (CCD). Treatment of rats with DOCA for 6 days significantly decreased the plasma K from 3.8 to 3.1 meq and reduced the activity of the SK channel, defined as NPo, from 1.3 in the CCD of control rats to 0.6. In contrast, DOCA treatment significantly increased ENaC activity from 0.01 to 0.53 and the basolateral 18-pS K channel activity from 0.67 to 1.63. Moreover, Western blot analysis revealed that DOCA treatment significantly increased the expression of the nonreceptor type of protein tyrosine kinase (PTK), cSrc, and the tyrosine phosphorylation of ROMK in the renal cortex and outer medulla. The possibility that decreases in apical SK channel activity induced by DOCA treatment were the result of stimulation of PTK activity was further supported by experiments in which inhibition of PTK with herbimycin A significantly increased NPo from 0.6 to 2.1 in the CCD from rats receiving DOCA. Also, when rats were fed a high-K (10%) diet, DOCA treatment did not increase the expression of c-Src and decrease the activity of the SK channel in the CCD. We conclude that DOCA treatment decreased the apical SK channel activity in rats on a normal-K diet and that an increase in PTK expression may be responsible for decreased channel activity in the CCD from DOCA-treated rats.


2002 ◽  
Vol 282 (4) ◽  
pp. F680-F686 ◽  
Author(s):  
Yuan Wei ◽  
Wen-Hui Wang

We have previously demonstrated that inhibiting protein tyrosine kinase (PTK) and stimulating protein kinase A (PKA) increase the activity of the small-conductance K (SK) channel in the cortical collecting duct (CCD) of rat kidneys (Cassola AC, Giebisch G, and Wang WH. Am J Physiol Renal Fluid Electrolyte Physiol 264: F502–F509, 1993; Wang WH, Lerea KM, Chan M, and Giebisch G. Am J Physiol Renal Physiol 278: F165–F171, 2000). In the present study, we used the patch-clamp technique to study the role of the cytoskeleton in mediating the effect of herbimycin A, an inhibitor of PTK, and vasopressin on the SK channels in the CCD. The addition of colchicine, an inhibitor of microtubule assembly, or taxol, an agent that blocks microtubule reconstruction, had no significant effect on channel activity. However, colchicine and taxol treatment completely abolished the stimulatory effect of herbimycin A on the SK channels in the CCD. Removal of the microtubule inhibitors restored the stimulatory effect of herbimycin A. In contrast, treatment of the tubules with either taxol or colchicine did not block the stimulatory effect of vasopressin on the SK channels. Moreover, the effect of herbimycin A on the SK channels was also absent in the CCDs treated with either cytochalasin D or phalloidin. In contrast, the stimulatory effect of vasopressin was still observed in the tubules treated with phalloidin. However, cytochalasin D treatment abolished the effect of vasopressin on the SK channels. Finally, the effects of vasopressin and herbimycin A are additive because inhibiting PTK can still increase the channel activity in CCD that has been challenged by vasopressin. We conclude that an intact cytoskeleton is required for the effect on the SK channels of inhibiting PTK and that the SK channels that are activated by inhibiting PTK were differently regulated from those stimulated by vasopressin.


2004 ◽  
Vol 124 (6) ◽  
pp. 719-727 ◽  
Author(s):  
Yuan Wei ◽  
Dao-Hong Lin ◽  
Rowena Kemp ◽  
Ganesh S.S. Yaddanapudi ◽  
Alberto Nasjletti ◽  
...  

We used the patch-clamp technique to study the effect of arachidonic acid (AA) on epithelial Na channels (ENaC) in the rat cortical collecting duct (CCD). Application of 10 μM AA decreased the ENaC activity defined by NPo from 1.0 to 0.1. The dose–response curve of the AA effect on ENaC shows that 2 μM AA inhibited the ENaC activity by 50%. The effect of AA on ENaC is specific because neither 5,8,11,14-eicosatetraynoic acid (ETYA), a nonmetabolized analogue of AA, nor 11,14,17-eicosatrienoic acid mimicked the inhibitory effect of AA on ENaC. Moreover, inhibition of either cyclooxygenase (COX) with indomethacin or cytochrome P450 (CYP) ω-hydroxylation with N-methylsulfonyl-12,12-dibromododec-11-enamide (DDMS) failed to abolish the effect of AA on ENaC. In contrast, the inhibitory effect of AA on ENaC was absent in the presence of N-methylsulfonyl-6-(propargyloxyphenyl)hexanamide (MS-PPOH), an agent that inhibits CYP-epoxygenase activity. The notion that the inhibitory effect of AA is mediated by CYP-epoxygenase–dependent metabolites is also supported by the observation that application of 200 nM 11,12-epoxyeicosatrienoic acid (EET) inhibited ENaC in the CCD. In contrast, addition of 5,6-, 8,9-, or 14,15-EET failed to decrease ENaC activity. Also, application of 11,12-EET can still reduce ENaC activity in the presence of MS-PPOH, suggesting that 11,12-EET is a mediator for the AA-induced inhibition of ENaC. Furthermore, gas chromatography mass spectrometry analysis detected the presence of 11,12-EET in the CCD and CYP2C23 is expressed in the principal cells of the CCD. We conclude that AA inhibits ENaC activity in the CCD and that the effect of AA is mediated by a CYP-epoxygenase–dependent metabolite, 11,12-EET.


1995 ◽  
Vol 268 (2) ◽  
pp. F211-F219 ◽  
Author(s):  
M. Kubokawa ◽  
W. Wang ◽  
C. M. McNicholas ◽  
G. Giebisch

The apical low-conductance K+ channel of rat cortical collecting duct (CCD) is inhibited by increased intracellular Ca2+ concentrations. This effect has been shown to be mediated at least in part by activation of protein kinase C (PKC). In the present study, we used the patch-clamp technique to examine the role of Ca2+/calmodulin-dependent protein kinase II (CaMK II) in mediating the Ca(2+)-induced inhibitory effect. In cell-attached patches of principal cells of rat tubules, clamping of intracellular Ca2+ concentration at 400 nM by using 1 microM ionomycin reduced channel activity to 26.5% of the control value. A further reduction in channel activity, to 8.8% of the control value, was observed following the addition of phorbol 12-myristate 13-acetate (PMA), an agent known to activate PKC. Pretreatment of cells with KN-62 (CaMK II inhibitor) or GF-109203X (PKC inhibitor) attenuated the inhibitory effect of Ca2+ on K+ channel activity (83.2 and 50.7% of the control value, respectively). Even in the presence of KN-62, addition of 10 microM PMA significantly decreased channel activity to 57.2% of the control value. The Ca(2+)-induced inhibition was completely abolished by simultaneous incubation with both KN-62 and GF-109203X. In inside-out patches, addition of 20 micrograms/ml CaMK II in the presence of a PKC inhibitor reduced channel activity to 66.2% of control values. It is concluded that CaMK II is involved in mediating the Ca(2+)-induced inhibition of the activity of the apical K+ channel of rat CCD.


2008 ◽  
Vol 294 (6) ◽  
pp. F1441-F1447 ◽  
Author(s):  
ZhiJian Wang ◽  
Yuan Wei ◽  
John R. Falck ◽  
Krishnam Raju Atcha ◽  
Wen-Hui Wang

We used the patch-clamp technique to study the effect of arachidonic acid (AA) on basolateral 18-pS K channels in the principal cell of the cortical collecting duct (CCD) of the rat kidney. Application of AA inhibited the 18-pS K channels in a dose-dependent manner and 10 μM AA caused a maximal inhibition. The effect of AA on the 18-pS K channel was specific because application of 11,14,17-eicosatrienoic acid had no effect on channel activity. Also, the inhibitory effect of AA on the 18-pS K channels was abolished by blocking cytochrome P-450 (CYP) epoxygenase with N-methylsulfonyl-6-(propargyloxyphenyl)hexanamide (MS-PPOH) but was not affected by inhibiting CYP ω-hydroxylase or cyclooxygenase. The notion that the inhibitory effect of AA was mediated by CYP epoxygenase-dependent metabolites was further supported by the observation that application of 100 nM 11,12-epoxyeicosatrienoic acid (EET) mimicked the effect of AA and inhibited the basolateral 18-pS K channels. In contrast, addition of either 5,6-, 8,9-, or 14,15-EET failed to inhibit the 18-pS K channels. Moreover, application of 11,12-EET was still able to inhibit the 18-pS K channels in the presence of MS-PPOH. This suggests that 11,12-EET is a mediator for the AA-induced inhibition of the 18-pS K channels. We conclude that AA inhibits basolateral 18-pS K channels by a CYP epoxygenase-dependent pathway and that 11,12-EET is a mediator for the effect of AA on basolateral K channels in the CCD.


2002 ◽  
Vol 283 (4) ◽  
pp. F689-F698 ◽  
Author(s):  
Rania Nasrallah ◽  
Rolf M. Nusing ◽  
Richard L. Hébert

To clarify the role of the PGI2/PGI2 receptor (IP) system in rabbit cortical collecting duct (RCCD), we characterized the expression of IP receptors in the rabbit kidney. We show by Northern and Western blotting that IP mRNA and protein was detectable in all three regions of the kidney. To determine how PGI2 signals, we compared the effects of different PGI2 analogs [iloprost (ILP), carba-prostacyclin (c-PGI2), and cicaprost (CCP)] in the isolated perfused RCCD. PGI2 analogs did not increase water flow ( L p). Although PGI2 analogs did not reduce an established L p response to 8-chlorophenylthio-cAMP, they equipotently inhibited AVP-stimulated L p by 45%. The inhibitory effect of ILP and c-PGI2 on AVP-stimulated L p is partially reversed by the protein kinase C inhibitor staurosporine and abolished by pertussis toxin; no effect was obtained with CCP. In fura 2-loaded RCCD, CCP did not alter cytosolic Ca2+concentration ([Ca2+]i), but, in the presence of CCP, individual infusion of ILP and PGE2 increased [Ca2+]i, suggesting that CCP did not cause desensitization to either ILP or PGE2. We concluded that ILP and c-PGI2 activate PKC and the liberation of [Ca2+]i but not CCP. This suggested an important role for phosphatidylinositol hydrolysis in mediating ILP and c-PGI2 effects but not CCP in RCCD.


2007 ◽  
Vol 293 (4) ◽  
pp. F1299-F1307 ◽  
Author(s):  
Yan Jin ◽  
Zhijian Wang ◽  
Yan Zhang ◽  
Baofeng Yang ◽  
Wen-Hui Wang

We used the patch-clamp technique and Western blot analysis to explore the effect of PGE2 on ROMK-like small-conductance K (SK) channels and Ca2+-activated big-conductance K channels (BK) in the cortical collecting duct (CCD). Application of 10 μM PGE2 inhibited SK and BK channels in the CCD. Moreover, either inhibition of PKC or blocking mitogen-activated protein kinase (MAPK), P38 and ERK, abolished the effect of PGE2 on SK channels in the CCD. The effect of PGE2 on SK channels was completely blocked in the presence of SC-51089, a specific EP1 receptor antagonist, and mimicked by application of sulprostone, an agonist for EP1 and EP3 receptors. To determine whether PGE2 stimulates the phosphorylation of P38 and ERK, we treated mouse CCD cells (M-1) with PGE2. Application of PGE2 significantly stimulated the phosphorylation of P38 and ERK within 5 min. The dose-response curve of PGE2 effect shows that 1, 5, and 10 μM PGE2 increased the phosphorylation of P38 and ERK by 20–21, 50–80, and 80–100%, respectively. The stimulatory effect of PGE2 on MAPK phosphorylation was not affected by indomethacin but abolished by inhibition of PKC. This suggests that the effect of PGE2 on MAPK phosphorylation is PKC dependent. Also, the expression of cyclooxygenase II and PGE2 concentration in renal cortex and outer medulla was significantly higher in rats fed a K-deficient diet than those on a normal-K diet. We conclude that PGE2 inhibits SK and BK channels and that there is an effect of PGE2 on SK channels in the CCD through activation of EP1 receptor and MAPK pathways. Also, high concentrations of PGE2 induced by K restriction may be partially responsible for increasing MAPK activity during K restriction.


2001 ◽  
Vol 280 (5) ◽  
pp. F786-F793 ◽  
Author(s):  
Craig B. Woda ◽  
Alvina Bragin ◽  
Thomas R. Kleyman ◽  
Lisa M. Satlin

K+ secretion by the cortical collecting duct (CCD) is stimulated at high flow rates. Patch-clamp analysis has identified a small-conductance secretory K+ (SK) and a high-conductance Ca2+-activated K+ (maxi-K) channel in the apical membrane of the CCD. The SK channel, encoded by ROMK, is believed to mediate baseline K+ secretion. The role of the stretch- and Ca2+-activated maxi-K channel is still uncertain. The purpose of this study was to identify the K+ channel mediating flow-dependent K+ secretion in the CCD. Segments isolated from New Zealand White rabbits were microperfused in the absence and presence of luminal tetraethylammonium (TEA) or charybdotoxin, both inhibitors of maxi-K but not SK channels, or apamin, an inhibitor of small-conductance maxi-K+ channels. Net K+ secretion and Na+ absorption were measured at varying flow rates. In the absence of TEA, net K+ secretion increased from 8.3 ± 1.0 to 23.4 ± 4.7 pmol · min−1 · mm−1( P < 0.03) as the tubular flow rate was increased from 0.5 to 6 nl · min−1 · mm−1. Flow stimulation of net K+ secretion was blocked by luminal TEA (8.2 ± 1.2 vs. 9.9 ± 2.7 pmol · min−1 · mm−1 at 0.6 and 6 nl · min−1 · mm−1 flow rates, respectively) or charybdotoxin (6.8 ± 1.6 vs. 8.3 ± 1.6 pmol · min−1 · mm−1 at 1 and 4 nl · min−1 · mm−1 flow rates, respectively) but not by apamin. These results suggest that flow-dependent K+ secretion is mediated by a maxi-K channel, whereas baseline K+ secretion occurs through a TEA- and charybdotoxin-insensitive SK (ROMK) channel.


2012 ◽  
Vol 303 (1) ◽  
pp. F110-F119 ◽  
Author(s):  
Dao-Hong Lin ◽  
Peng Yue ◽  
Jesse Rinehart ◽  
Peng Sun ◽  
Zhijian Wang ◽  
...  

With-no-Lysine kinase 4 (WNK4) inhibited ROMK (Kir1.1) channels and the inhibitory effect of WNK4 was abolished by serum-glucocorticoid-induced kinase 1 (SGK1) but restored by c-Src. The aim of the present study is to explore the mechanism by which Src-family tyrosine kinase (SFK) modulates the effect of SGK1 on WNK4 and to test the role of SFK-WNK4-SGK1 interaction in regulating ROMK channels in the kidney. Immunoprecipitation demonstrated that protein phosphatase 1 (PP1) binds to WNK4 at amino acid (aa) residues 695–699 (PP1#1) and at aa 1211–1215 (PP1#2). WNK4−PP1#1 and WNK4−PP1#2, in which the PP1#1 or PP1#2 binding site was deleted or mutated, inhibited ROMK channels as potently as WNK4. However, c-Src restored the inhibitory effect of WNK4 but not WNK4−PP1#1 on ROMK channels in the presence of SGK1. Moreover, expression of c-Src inhibited SGK1-induced phosphorylation of WNK4 but not WNK4−PP1#1 at serine residue 1196 (Ser1196). In contrast, coexpression of c-Src restored the inhibitory effect of WNK4−PP1#2 on ROMK in the presence of SGK1 and diminished SGK1-induced WNK4 phosphorylation at Ser1196 in cells transfected with WNK4−PP1#2. This suggests the possibility that c-Src regulates the interaction between WNK4 and SGK1 through activating PP1 binding to aa 695–9 thereby decreasing WNK4 phosphorylation and restoring the inhibitory effect of WNK4. This mechanism plays a role in suppressing ROMK channel activity during the volume depletion because inhibition of SFK or serine/threonine phosphatases increases ROMK channel activity in the cortical collecting duct of rats on a low-Na diet. We conclude that regulation of phosphatase activity by SFK plays a role in determining the effect of aldosterone on ROMK channels and on renal K secretion.


1998 ◽  
Vol 275 (1) ◽  
pp. C309-C316 ◽  
Author(s):  
Ming Lu ◽  
Wen-Hui Wang

We previously demonstrated that nitric oxide (NO) stimulates the basolateral small-conductance K+channel (SK) via a cGMP-dependent pathway [M. Lu and W. H. Wang. Am. J. Physiol. 270 ( Cell Physiol. 39): C1336–C1342, 1996]. Because NO at high concentration has been shown to react with superoxide ([Formula: see text]) to form peroxynitrite (OONO−) [W. A. Pryor and G. L. Squadrito. Am. J. Physiol. 268 ( Lung Cell. Mol. Physiol. 12): L699–L722, 1995 and M. S. Wolin. Microcirculation 3: 1–17, 1996], we extended our study to examine, using patch-clamp technique, the effect of high concentrations of NO on SK in cortical collecting duct (CCD) of rat kidney. Addition of NO donors [100–200 μM S-nitroso- N-acetyl-penicillamine (SNAP) or sodium nitroprusside (SNP)] reduced channel activity, defined as the product of channel number and open probability, to 15 and 25% of the control value, respectively. The inhibitory effect of NO was completely abolished in the presence of 10 mM Tiron, an intracellular scavenger of [Formula: see text]. NO donors, 10 μM SNAP or SNP, which stimulate channel activity under control conditions, can also inhibit SK in the presence of an[Formula: see text] donor, pyrogallol, or in the presence of an inhibitor of superoxide dismutase, diethyldithiocarbamic acid. The inhibitory effect of NO is still observed in the presence of exogenous cGMP, suggesting that the NO-induced inhibition is not the result of decreased cGMP production. We conclude that the inhibitory effect of NO on channel activity results from an interaction between NO and [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document