Postnatal maturation of potassium transport in rabbit cortical collecting duct

1994 ◽  
Vol 266 (1) ◽  
pp. F57-F65 ◽  
Author(s):  
L. M. Satlin

Clearance studies in newborns demonstrate low rates of urinary excretion of potassium, suggesting that the neonatal kidney contributes to the conservation of potassium necessary for growth. Because the cortical collecting duct (CCD) is a primary site for potassium secretion in the adult, we sought to examine the transport capacity of this segment for potassium during postnatal maturation. CCDs isolated from rabbits of various ages (5-6 animals/age group) were microperfused in vitro with solutions simulating plasma. The concentrations of potassium in samples of collected fluid, measured by helium glow photometry, were used to calculate net transport. At a flow rate of approximately 1.6 nl.min-1 x mm-1 net potassium secretion was absent at birth, first became evident at 4 wk of age (-11.08 +/- 2.39 pmol.min-1 x mm-1), and increased sharply thereafter to reach mature rates (-23.08 +/- 3.47 pmol.min-1 x mm-1; P < 0.05) by 6 wk of age. To determine whether low distal tubular flow rates limit net potassium secretion in the neonate, we perfused CCDs at two or more flow rates in the 0.5–5 nl.min-1 x mm-1 range. In CCDs taken from animals > or = 6 wk of age, potassium secretion showed a significant linear correlation with flow rate (y = -10.0x - 7.45; r = 0.87; n = 12).(ABSTRACT TRUNCATED AT 250 WORDS)

1975 ◽  
Vol 229 (5) ◽  
pp. 1403-1409 ◽  
Author(s):  
HJ Reineck ◽  
RW Osgood ◽  
TF Ferris ◽  
JH Stein

Because of recent conflicting results, micropuncture studies were performed to clarify the respective role of the distal convoluted tubule and collecting duct in the regulation of urinary potassium excretion. Five groups of Sprague-Dawley rats were studied: group I, hydropenia (n = 10); group II, Ringer loading (n = 7); group III, acute KC1 loading (n = 6); group IV, mannitol diuresis (n = 6); group V, KC1 infusion during mannitol diuresis (n = 7). Early and late distal tubules were identified with intravenous injections of lissamine green. In each animal net secretion of potassium occurred along the distal convoluted tubule, and a direct relationship between distal tubular flow rate and potassium secretion was observed. The magnitude of potassium secretion at high distal tubular flow rates was dependent on the model studied. Potassium transport beyond the distal tubule was evaluated by comparing end distal potassium delivery and fractional potassium excretion. At low urinary flow rates net reabsorption was observed, whereas at higher flow rates no net transport occurred. Thus, flow rate along the collecting duct may be a major determinant of urinary potassium excretion.


1992 ◽  
Vol 262 (1) ◽  
pp. F30-F35 ◽  
Author(s):  
H. Furuya ◽  
K. Tabei ◽  
S. Muto ◽  
Y. Asano

Insulin is known to play an important role in the regulation of extrarenal K homeostasis. Previous clearance studies have shown that insulin decreases urinary K excretion, but the responsible nephron segments have not been identified. In this microperfusion study, in vitro, the effect of insulin on K transport in the cortical collecting duct (CCD), which is thought to be an important segment for regulation of the final urinary K excretion, was investigated. Basolateral insulin (10(-6) M) significantly inhibited net K secretion by 20% (mean JK = -26.2 +/- 4.2 peq.mm-1.min-1 for controls compared with -21.1 +/- 3.4 with insulin, P less than 0.001) and depolarized the transepithelial voltage (VT, from -14.6 +/- 3.5 to -10.8 +/- 3.5 mV, P less than 0.005), recovery did not occur over 60 min. Insulin (10(-11)-10(-5) M) depressed K secretion and depolarized the VT in a concentration-dependent manner. The half-maximal concentration was 5 x 10(-10) M, which is within the physiological range of plasma insulin concentration. In tubules of deoxycorticosterone acetate-treated rabbits, insulin also produced a significant fall in K secretion (from -43.4 +/- 7.5 to -36.1 +/- 5.7 peq.mm-1.min-1, P less than 0.05). Although luminal Ba (2 mM) decreased K secretion (from -14.4 +/- 2.9 to -7.0 +/- 1.7 peq.mm-1.min-1), basolateral insulin (10(-6) M) inhibited K secretion further (to -4.7 +/- 1.3 peq.mm-1.min-1, P less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)


2009 ◽  
Vol 297 (4) ◽  
pp. F904-F915 ◽  
Author(s):  
Wen Liu ◽  
Yuan Wei ◽  
Peng Sun ◽  
Wen-Hui Wang ◽  
Thomas R. Kleyman ◽  
...  

Flow-stimulated net K secretion ( JK) in the cortical collecting duct (CCD) is mediated by an iberiotoxin (IBX)-sensitive BK channel, and requires an increase in intracellular Ca2+ concentration ([Ca2+]i). The α-subunit of the reconstituted BK channel is phosphorylated by PKA and PKC. To test whether the BK channel in the native CCD is regulated by these kinases, JK and net Na absorption ( JNa) were measured at slow (∼1) and fast (∼5 nl·min−1·mm−1) flow rates in rabbit CCDs microperfused in the presence of mPKI, an inhibitor of PKA; calphostin C, which inhibits diacylglycerol binding proteins, including PKC; or bisindolylmaleimide (BIM) and Gö6976, inhibitors of classic and novel PKC isoforms, added to luminal (L) and/or basolateral (B) solutions. L but not B mPKI increased JK in CCDs perfused at a slow flow rate; a subsequent increase in flow rate augmented JK modestly. B mPKI alone or with L inhibitor abolished flow stimulation of JK. Similarly, L calphostin C increased JK in CCDs perfused at slow flow rates, as did calphostin C in both L and B solutions. The observation that IBX inhibited the L mPKI- and calphostin C-mediated increases in JK at slow flow rates implicated the BK channel in this K flux, a notion suggested by patch-clamp analysis of principal cells. The kinase inhibited by calphostin C was not PKC as L and/or B BIM and Gö6976 failed to enhance JK at the slow flow rate. However, addition of these PKC inhibitors to the B solution alone or with L inhibitor blocked flow stimulation of JK. Interpretation of these results in light of the effects of these inhibitors on the flow-induced elevation of [Ca2+]i suggests that the principal cell apical BK channel is tonically inhibited by PKA and that flow stimulation of JK in the CCD is PKA and PKC dependent. The specific targets of the kinases remain to be identified.


2001 ◽  
Vol 280 (5) ◽  
pp. F786-F793 ◽  
Author(s):  
Craig B. Woda ◽  
Alvina Bragin ◽  
Thomas R. Kleyman ◽  
Lisa M. Satlin

K+ secretion by the cortical collecting duct (CCD) is stimulated at high flow rates. Patch-clamp analysis has identified a small-conductance secretory K+ (SK) and a high-conductance Ca2+-activated K+ (maxi-K) channel in the apical membrane of the CCD. The SK channel, encoded by ROMK, is believed to mediate baseline K+ secretion. The role of the stretch- and Ca2+-activated maxi-K channel is still uncertain. The purpose of this study was to identify the K+ channel mediating flow-dependent K+ secretion in the CCD. Segments isolated from New Zealand White rabbits were microperfused in the absence and presence of luminal tetraethylammonium (TEA) or charybdotoxin, both inhibitors of maxi-K but not SK channels, or apamin, an inhibitor of small-conductance maxi-K+ channels. Net K+ secretion and Na+ absorption were measured at varying flow rates. In the absence of TEA, net K+ secretion increased from 8.3 ± 1.0 to 23.4 ± 4.7 pmol · min−1 · mm−1( P < 0.03) as the tubular flow rate was increased from 0.5 to 6 nl · min−1 · mm−1. Flow stimulation of net K+ secretion was blocked by luminal TEA (8.2 ± 1.2 vs. 9.9 ± 2.7 pmol · min−1 · mm−1 at 0.6 and 6 nl · min−1 · mm−1 flow rates, respectively) or charybdotoxin (6.8 ± 1.6 vs. 8.3 ± 1.6 pmol · min−1 · mm−1 at 1 and 4 nl · min−1 · mm−1 flow rates, respectively) but not by apamin. These results suggest that flow-dependent K+ secretion is mediated by a maxi-K channel, whereas baseline K+ secretion occurs through a TEA- and charybdotoxin-insensitive SK (ROMK) channel.


2002 ◽  
Vol 283 (3) ◽  
pp. F437-F446 ◽  
Author(s):  
Craig B. Woda ◽  
Maurilo Leite ◽  
Rajeev Rohatgi ◽  
Lisa M. Satlin

Nucleotide binding to purinergic P2 receptors contributes to the regulation of a variety of physiological functions in renal epithelial cells. Whereas P2 receptors have been functionally identified at the basolateral membrane of the cortical collecting duct (CCD), a final regulatory site of urinary Na+, K+, and acid-base excretion, controversy exists as to whether apical purinoceptors exist in this segment. Nor has the distribution of receptor subtypes present on the unique cell populations that constitute Ca2+ the CCD been established. To examine this, we measured nucleotide-induced changes in intracellular Ca2+ concentration ([Ca2+]i) in fura 2-loaded rabbit CCDs microperfused in vitro. Resting [Ca2+]i did not differ between principal and intercalated cells, averaging ∼120 nM. An acute increase in tubular fluid flow rate, associated with a 20% increase in tubular diameter, led to increases in [Ca2+]i in both cell types. Luminal perfusion of 100 μM UTP or ATP-γ-S, in the absence of change in flow rate, caused a rapid and transient approximately fourfold increase in [Ca2+]i in both cell types ( P< 0.05). Luminal suramin, a nonspecific P2 receptor antagonist, blocked the nucleotide- but not flow-induced [Ca2+]i transients. Luminal perfusion with a P2X (α,β-methylene-ATP), P2X7 (benzoyl-benzoyl-ATP), P2Y1 (2-methylthio-ATP), or P2Y4/P2Y6 (UDP) receptor agonist had no effect on [Ca2+]i. The nucleotide-induced [Ca2+]i transients were inhibited by the inositol-1,4,5-triphosphate receptor blocker 2-aminoethoxydiphenyl borate, thapsigargin, which depletes internal Ca2+ stores, luminal perfusion with a Ca2+-free perfusate, or the L-type Ca2+ channel blocker nifedipine. These results suggest that luminal nucleotides activate apical P2Y2 receptors in the CCD via pathways that require both internal Ca2+mobilization and extracellular Ca2+ entry. The flow-induced rise in [Ca2+]i is apparently not mediated by apical P2 purinergic receptor signaling.


1994 ◽  
Vol 267 (1) ◽  
pp. F49-F54 ◽  
Author(s):  
V. M. Vehaskari

The postnatal maturation of Na transport in the rabbit cortical collecting duct (CCD) was investigated. CCD segments from rabbits of three different age groups (3-9 days, 10-15 days, and 22-27 days) were perfused in vitro. Lumen-to-bath 22Na fluxes were 38.5 +/- 4.7, 17.0 +/- 2.9, and 30.2 +/- 4.0 pmol.mm-1.min-1 in the three groups, respectively. The high flux in the youngest group was explained by a high passive flux (28.3 +/- 4.2 pmol.mm-1.min-1) determined in the presence of ouabain; the passive 22Na flux in the two other groups (7.1 +/- 2.6 and 3.1 +/- 2.4 pmol.mm-1.min-1) was not significantly different from previously reported adult values. Ouabain-sensitive 22Na flux, reflecting active transport, was low in the two younger groups (10.3 +/- 2.5 and 9.9 +/- 1.9 pmol.mm-1.min-1), but exhibited a rapid increase to 27.1 +/- 2.6 pmol.mm-1.min-1 by 22-27 days of age. In vivo glucocorticoid pretreatment did not affect the Na transport in any age group. Mineralocorticoid pretreatment for 2 days had no effect in the two younger groups, but increased lumen-to-bath 22Na flux from 30.2 +/- 4.0 to 51.1 +/- 4.3 pmol.mm-1.min-1 in the 22- to 27-day-old group. The findings demonstrate that the maturation of rabbit CCD Na transport occurs in two stages, with the first consisting of a decrease in passive permeability during the first 2 wk of life, followed by an increase in active transport and simultaneous development of mineralocorticoid responsiveness.


2003 ◽  
Vol 285 (5) ◽  
pp. F998-F1012 ◽  
Author(s):  
Wen Liu ◽  
Shiyun Xu ◽  
Craig Woda ◽  
Paul Kim ◽  
Sheldon Weinbaum ◽  
...  

An acute increase in tubular fluid flow rate in the microperfused cortical collecting duct (CCD), associated with a ∼20% increase in tubular diameter, leads to an increase in intracellular Ca2+ concentration ([Ca2+]i)in both principal and intercalated cells (Woda CB, Leite M Jr, Rohatgi R, and Satlin LM. Am J Physiol Renal Physiol 283: F437-F446, 2002). The apical cilium present in principal but not intercalated cells has been proposed to be a flow sensor. To determine whether flow across the cilium and/or epithelial stretch mediates the [Ca2+]i response, CCDs from New Zealand White rabbits were microperfused in vitro, split-open (to isolate the effect of flow across cilia), or occluded (to examine the effect of stretch and duration/magnitude of the flow impulse), and [Ca2+]i was measured using fura 2. In perfused and occluded CCDs, a rapid (<1 s) but not slow (>3 min) increase in luminal flow rate and/or circumferential stretch led to an approximately threefold increase in [Ca2+]i in both principal and intercalated cells within ∼10 s. This response was mediated by external Ca2+ entry and inositol 1,4,5-trisphosphate-mediated release of cell Ca2+ stores. In split-open CCDs, an increase in superfusate flow led to an approximately twofold increase in [Ca2+]i in both cell types within ∼30 s. These experimental findings are interpreted using mathematical models to predict the fluid stress on the apical membranes of the CCD and the forces and torques on and deformation of the cilia. We conclude that rapid increases in luminal flow rate and circumferential stretch, leading to shear or hydrodynamic impulses at the cilium or apical membrane, lead to increases in [Ca2+]i in both principal and intercalated cells.


2013 ◽  
Vol 304 (4) ◽  
pp. F397-F402 ◽  
Author(s):  
Chih-Jen Cheng ◽  
Michel Baum ◽  
Chou-Long Huang

Kidney-specific with-no-lysine kinase 1 (KS-WNK1) is a kinase-deficient variant of WNK1 that is expressed exclusively in the kidney. It is abundantly expressed in the distal convoluted tubule (DCT) and to a lesser extent in the cortical thick ascending limb (cTAL), connecting tubule, and cortical collecting duct (CCD). KS-WNK1 inhibits Na+-K+-2Cl−- and sodium chloride cotransporter-mediated Na+ reabsorption in cTAL and DCT, respectively. Here, we investigated the role of KS-WNK1 in regulating Na+ and K+ transport in CCD using in vitro microperfusion of tubules isolated from KS-WNK1 knockout mice and control wild-type littermates. Because baseline K+ secretion and Na+ reabsorption were negligible in mouse CCD, we studied tubules isolated from mice fed a high-K+ diet for 2 wk. Compared with that in wild-type tubules, K+ secretion was reduced in KS-WNK1 knockout CCD perfused at a low luminal fluid rate of ∼1.5 nl/min. Na+ reabsorption and the lumen-negative transepithelial potential difference were also lower in the KS-WNK1 knockout CCD compared with control CCD. Increasing the perfusion rate to ∼5.5 nl/min stimulated K+ secretion in the wild-type as well as knockout CCD. The magnitudes of flow-stimulated increase in K+ secretion were similar in wild-type and knockout CCD. Maxi-K+ channel inhibitor iberiotoxin had no effect on K+ secretion when tubules were perfused at ∼1.5 nl/min, but completely abrogated the flow-dependent increase in K+ secretion at ∼5.5 nl/min. These findings support the notion that KS-WNK1 stimulates ROMK-mediated K+ secretion, but not flow-dependent K+ secretion mediated by maxi-K+ channels in CCD. In addition, KS-WNK1 plays a role in regulating Na+ transport in the CCD.


2021 ◽  
Vol 12 ◽  
Author(s):  
Robert Repetti ◽  
Nomrota Majumder ◽  
Karin Carneiro De Oliveira ◽  
Jennifer Meth ◽  
Tenzin Yangchen ◽  
...  

Nephron loss initiates compensatory hemodynamic and cellular effects on the remaining nephrons. Increases in single nephron glomerular filtration rate and tubular flow rate exert higher fluid shear stress (FSS) on tubules. In principal cell (PC) culture models FSS induces ERK, and ERK is implicated in the regulation of transepithelial sodium (Na) transport, as well as, proliferation. Thus, we hypothesize that high tubular flow and FSS mediate ERK activation in the cortical collecting duct (CCD) of solitary kidney which regulates amiloride sensitive Na transport and affects CCD cell number. Immunoblotting of whole kidney protein lysate was performed to determine phospho-ERK (pERK) expression. Next, sham and unilateral nephrectomized mice were stained with anti-pERK antibodies, and dolichos biflorus agglutinin (DBA) to identify PCs with pERK. Murine PCs (mpkCCD) were grown on semi-permeable supports under static, FSS, and FSS with U0126 (a MEK1/2 inhibitor) conditions to measure the effects of FSS and ERK inhibition on amiloride sensitive Na short circuit current (Isc). pERK abundance was greater in kidney lysate of unilateral vs. sham nephrectomies. The total number of cells in CCD and pERK positive PCs increased in nephrectomized mice (9.3 ± 0.4 vs. 6.1 ± 0.2 and 5.1 ± 0.5 vs. 3.6 ± 0.3 cell per CCD nephrectomy vs. sham, respectively, n &gt; 6 per group, p &lt; 0.05). However, Ki67, a marker of proliferation, did not differ by immunoblot or immunohistochemistry in nephrectomy samples at 1 month compared to sham. Next, amiloride sensitive Isc in static mpkCCD cells was 25.3 ± 1.7 μA/cm2 (n = 21), but after exposure to 24 h of FSS the Isc increased to 41.4 ± 2.8 μA/cm2 (n = 22; p &lt; 0.01) and returned to 19.1 ± 2.1 μA/cm2 (n = 18, p &lt; 0.01) upon treatment with U0126. Though FSS did not alter α- or γ-ENaC expression in mpkCCD cells, γ-ENaC was reduced in U0126 treated cells. In conclusion, pERK increases in whole kidney and, specifically, CCD cells after nephrectomy, but pERK was not associated with active proliferation at 1-month post-nephrectomy. In vitro studies suggest high tubular flow induces ERK dependent ENaC Na absorption and may play a critical role in Na balance post-nephrectomy.


1987 ◽  
Vol 253 (5) ◽  
pp. F896-F903 ◽  
Author(s):  
B. G. Engbretson ◽  
L. C. Stoner

Cortical collecting tubules (CCT) dissected from rabbits fed a diet designed to stimulate potassium transport secreted potassium in direct proportion to the flow rate in the range of 0.4-3 nl/min (r = 0.79). This relationship was also evident in tubules from rabbits maintained on standard laboratory chow (r = 0.80). The slope of the line relating the two parameters was almost six times greater in tubules from animals fed the special diet. When the range of flow rates was expanded, potassium secretion in nine CCTs appeared to peak at 5-6 nl/min and then failed to increase despite further elevation of flow to nearly 15 nl/min. We investigated the effects of the electrical and chemical gradients on flow-dependent potassium secretion. Because transepithelial voltage was unaffected by changes in axial flow, we conclude that the flow-dependent fraction of potassium secretion is not explained by the electrical gradient. To evaluate the role of luminal potassium concentration on flow-dependent potassium secretion, 11 CCTs were perfused with both 5 and 50 mM potassium solutions at two flow rates (approximately 1.5 and 4.0 nl/min). Increases in both potassium secretion (15.6 +/- 3.9 peq.mm-1.min-1) and sodium reabsorption (11.9 +/- 5.2 peq.mm-1.min-1) were evident in the tubules perfused with 5 mM potassium. Potassium secretion was not reduced by 50 mM luminal potassium at the low flow rate when the largest chemical gradients opposing net secretion were generated. When 50 mM potassium was present in the lumen, increasing flow did not stimulate potassium secretion.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document