Long-term regulation of four renal aquaporins in rats

1996 ◽  
Vol 271 (2) ◽  
pp. F414-F422 ◽  
Author(s):  
J. Terris ◽  
C. A. Ecelbarger ◽  
S. Nielsen ◽  
M. A. Knepper

The aquaporins are molecular water channels expressed in the kidney and other organs. To investigate long-term regulation of renal expression of these water channels, we carried out immunoblotting studies using membrane fractions from rat renal cortex and medulla. Both 48-h water restriction in Sprague-Dawley rats and 5-day arginine vasopressin (AVP) infusion in Brattleboro rats caused significant increases in the expression levels of two aquaporins, aquaporin-2 and aquaporin-3, while the levels of aquaporin-1 and aquaporin-4 were unchanged. The increases in aquaporin-2 and aquaporin-3 expression were seen in inner and outer medulla as well as cortex. Ablation of the corticomedullary interstitial osmotic gradient with an infusion of furosemide did not eliminate the upregulatory response to AVP infusion in Brattleboro rats. Furthermore, 5-day furosemide infusion to Sprague-Dawley rats did not decrease expression levels of the collecting duct aquaporins, but rather increased them. We conclude that the expression of aquaporin-2 and aquaporin-3, but not aquaporin-1 or aquaporin-4, is increased in response to elevated circulating AVP. Because regulation of aquaporin-2 and aquaporin-3 levels was observed in the cortex and because osmotic gradient ablation did not abrogate the increase, we conclude that changes in interstitial osmolality are not necessary for the AVP-induced upregulation of aquaporin-2 and aquaporin-3 expression.

2000 ◽  
Vol 278 (4) ◽  
pp. F620-F627 ◽  
Author(s):  
Chairat Shayakul ◽  
Craig P. Smith ◽  
Harald S. Mackenzie ◽  
Wen-Sen Lee ◽  
Dennis Brown ◽  
...  

Regulation of urea concentration in the renal medullary interstitium is important for maintenance of hypertonicity and therefore the osmotic driving force for water reabsorption. Studies in Sprague-Dawley rats showed that restriction of water intake for 3 days results in upregulation of urea transporter (UT) mRNA in the inner stripe of outer medulla of the kidney (2.9-kb UT2) but not in the inner medulla (4.0-kb UT1). The present study was performed to investigate the role of vasopressin in long-term regulation of UT1 and UT2 in neurogenic diabetes insipidus (Brattleboro) rats treated with a 7-day continuous infusion of [Arg8]-vasopressin (AVP), [deamino-Cys1,d-Arg8]-vasopressin (dDAVP) or vehicle. Northern analysis showed that water restriction alone had no effect on the level of UT2 mRNA in vehicle-treated Brattleboro rats but UT2 mRNA markedly increased and UT1 mRNA modestly decreased after treatment with dDAVP. In situ hybridization further demonstrated that the UT2 signal is upregulated and spread along the descending thin limbs of loops of Henle and that UT1 signal is downregulated in the inner medullary collecting ducts in vasopressin-treated rats, with a greater response for dDAVP compared with the AVP-treated group. Immunocytochemistry studies revealed that the UT1 and UT2 proteins are also modified in the same pattern as the transcript changes. Our studies reveal the role of vasopressin in long-term regulation of UT1 and UT2 expression during water restriction.


2006 ◽  
Vol 82 (4) ◽  
pp. 285-291 ◽  
Author(s):  
H. J. Lee ◽  
S. H. Kim ◽  
S. Y. Choi ◽  
Y. M. Gimm ◽  
J. K. Pack ◽  
...  

2006 ◽  
Vol 74 (7) ◽  
pp. 4387-4389 ◽  
Author(s):  
Rachel Marion ◽  
Asiya Baishanbo ◽  
Gilles Gargala ◽  
Arnaud François ◽  
Philippe Ducrotté ◽  
...  

ABSTRACT In 5-day-old immunocompetent Sprague-Dawley rats infected with either 102 or 105 Cryptosporidium parvum oocysts, transient infection resulted 120 days later in increased cardiovascular depressor response to jejunal distension and jejunal myeloperoxidase activity (P < 0.05). Nitazoxanide treatment normalized jejunal sensitivity (P < 0.001) but not myeloperoxidase levels (P > 0.05). Data warrant further evaluation of the role of early cryptosporidiosis in the development of chronic inflammatory gut conditions.


2020 ◽  
Vol 319 ◽  
pp. 160-167 ◽  
Author(s):  
Yizhou Zhong ◽  
Boxuan Liang ◽  
Manjiang Hu ◽  
Jun Liu ◽  
Li Lin ◽  
...  

2016 ◽  
Vol 14 (3) ◽  
pp. 2101-2106 ◽  
Author(s):  
Xiaohui Hao ◽  
Hongli Wang ◽  
Wei Liu ◽  
Shupeng Liu ◽  
Zihe Peng ◽  
...  

1998 ◽  
Vol 9 (5) ◽  
pp. 729-736 ◽  
Author(s):  
J Terris ◽  
C A Ecelbarger ◽  
J M Sands ◽  
M A Knepper

To test the hypothesis that the abundance of the apical urea transporter of the inner medullary collecting duct (IMCD) is regulated in vivo by factors associated with altered water balance, immunoblots of rat inner medullary membrane fractions were probed with rabbit polyclonal antibodies against the renal urea transporter (RUT) gene product. In inner medullas of Brattleboro rats, which manifest severe chronic water diuresis, a 117-kD band was seen, in addition to the previously described 97-kD band. These two bands were detectable by antibodies directed against two different regions of the RUT sequence. When Brattleboro rats were treated with a 5-d infusion of arginine vasopressin (AVP) by osmotic minipump, the 117-kD band was markedly diminished, whereas the 97-kD band was unchanged. Simultaneous infusion of the diuretic agent furosemide prevented the AVP-induced decrease in the 117-kD band. In AVP-infused Sprague Dawley rats, the 117-kD band was barely perceptible. However, when AVP-treated rats were infused with furosemide for 5 d, the 117-kD band was markedly accentuated, whereas the 97-kD band was unchanged. The abundance of the 117-kD RUT protein in the renal papilla was inversely correlated with dietary protein intake. Further immunoblotting studies revealed that the 117-kD protein is heavily expressed in IMCD cells and not in non-collecting duct components of the inner medulla, and is present in low-density microsome fractions from inner medulla. From this study, the following conclusions can be made: (1) The collecting duct urea transporter is present in at least two forms (97 and 117 kD) in the IMCD. (2) The expression level of the 117-kD urea transporter protein is regulated and is inversely correlated with medullary osmolality and urea concentration, but does not correlate with circulating AVP level. (3) Although AVP regulates RUT function on a short-term basis, long-term changes in AVP levels do not increase RUT abundance.


2001 ◽  
Vol 90 (5) ◽  
pp. 2001-2006 ◽  
Author(s):  
D. D. Fuller ◽  
A. G. Zabka ◽  
T. L. Baker ◽  
G. S. Mitchell

Episodic hypoxia evokes a sustained augmentation of respiratory motor output known as long-term facilitation (LTF). Phrenic LTF is prevented by pretreatment with the 5-hydroxytryptamine (5-HT) receptor antagonist ketanserin. We tested the hypothesis that 5-HT receptor activation is necessary for the induction but not maintenance of phrenic LTF. Peak integrated phrenic nerve activity (∫Phr) was monitored for 1 h after three 5-min episodes of isocapnic hypoxia (arterial Po 2 = 40 ± 2 Torr; 5-min hyperoxic intervals) in four groups of anesthetized, vagotomized, paralyzed, and ventilated Sprague-Dawley rats [ 1) control ( n = 11), 2) ketanserin pretreatment (2 mg/kg iv; n = 7), and ketanserin treatment 0 and 45 min after episodic hypoxia ( n = 7 each)]. Ketanserin transiently decreased ∫Phr, but it returned to baseline levels within 10 min. One hour after episodic hypoxia, ∫Phr was significantly elevated from baseline in control and in the 0- and 45-min posthypoxia ketanserin groups. Conversely, ketanserin pretreatment abolished phrenic LTF. We conclude that 5-HT receptor activation is necessary to initiate (during hypoxia) but not maintain (following hypoxia) phrenic LTF.


Sign in / Sign up

Export Citation Format

Share Document