Extracellular Ca2+ decreases chloride reabsorption in rat CTAL by inhibiting cAMP pathway

1998 ◽  
Vol 275 (2) ◽  
pp. F198-F203 ◽  
Author(s):  
Marie Céleste De Jesus Ferreira ◽  
Claire Bailly

The effect of activation of the Ca2+-sensing receptor on net Cl flux ( J Cl) has been investigated on microperfused cortical (C) thick ascending limb (TAL) from rat kidney. Increasing bath Ca2+ from 0.5 to 3 mM or adding 200 μM of the specific Ca2+-sensing receptor agonist neomycin reduced basal as well as antidiuretic hormone (ADH)-stimulated J Cl by 27.7 ± 5.0% and 25.9 ± 4.1%, respectively. J Cl remained unchanged in time control tubules. The effect of neomycin/Ca2+ on J Cl was blocked by two protein kinase A inhibitors, H-9 or H-89, but not by a protein kinase C inhibitor, GF-109203X, regardless of whether ADH was present or not. Moreover, H-89 decreased basal J Cl and prevented a further effect of 3 mM Ca2+. When J Cl was increased by 8-bromo-cAMP plus IBMX, no effect of 3 mM Ca2+ was observed. Inhibitors of phospholipase A2 and cytochrome P-450 monooxygenase failed to modify the effect of 3 mM Ca2+, although these agents dampened significantly the inhibitory effect of bradykinin on medullary TAL. We conclude that extracellular Ca2+ decreases basal and ADH-stimulated Cl reabsorption in CTAL by inhibiting the cAMP pathway, independently of protein kinase C or phospholipase A2 stimulation.

1996 ◽  
Vol 271 (1) ◽  
pp. C136-C143 ◽  
Author(s):  
M. L. Carranza ◽  
E. Feraille ◽  
H. Favre

We have previously shown that, in oxygenated rat kidney proximal convoluted tubules (PCT), activation of protein kinase C (PKC) by phorbol 12,13-dibutyrate (PDBu) directly stimulates Na(+)-K(+)-adenosinetriphosphatase (ATPase) activity. PKC modulation of Na(+)-K(+)-ATPase activity by phosphorylation of its alpha-subunit was the postulated mechanism. The present study was therefore designed to investigate the relationship between PKC-mediated phosphorylation of the catalytic alpha-subunit and the cation transport activity of the Na(+)-K(+)-ATPase. In a suspension of rat kidney cortical tubules, activation of PKC by 10(-7) M PDBu increased the level of phosphorylation of the Na(+)-K(+)-ATPase alpha-subunit and stimulated the ouabain-sensitive 86Rb uptake by 47 and 42%, respectively. Time and dose dependence of the PDBu-induced increase in Na(+)-K(+)-ATPase activity and phosphorylation was strongly linearly correlated. The effects of PDBu on phosphorylation and activity of Na(+)-K(+)-ATPase were prevented by GF-109203X, a specific PKC inhibitor, whereas H-89, a specific PKA inhibitor, was ineffective. These results demonstrate that PKC activation induces phosphorylation of the catalytic alpha-subunit of Na(+)-K(+)-ATPase, which may participate in the stimulation of its cation transport activity in the rat PCT.


2006 ◽  
Vol 84 (5) ◽  
pp. 573-577 ◽  
Author(s):  
Frank Schütte ◽  
Christof Burgdorf ◽  
Gert Richardt ◽  
Thomas Kurz

Stimulation of adenosine A1 receptors in the heart exerts cardioprotective effects by inhibiting norepinephrine (NE) release from sympathetic nerve endings. The intraneuronal signal transduction triggered by presynaptic adenosine A1 receptors is still not completely understood. The objective of the present study was to determine whether phospholipase C (PLC), protein kinase C (PKC), and adenylyl cyclase (AC) are involved in the adenosine A1 receptor-mediated inhibition of endogenous (stimulation-induced) NE release in isolated Langendorff-perfused rat hearts as an approach to elucidate their role in the cardiovascular system. Activation of adenosine A1-receptors with 2-chloro-N6-cyclopentyladenosine (CCPA) decreased cardiac NE release by ~40%. Inhibition of PLC with 1-[6-[[(17b)-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione (U 73122) as well as inhibition of PKC with 2-[1-(3-dimethylaminopropyl)indol-3-yl]-3-(indol-3-yl)maleimide (GF 109203X) slightly but significantly decreased NE release; however, the suppressive effect of CCPA on NE release was not modulated by U 73122 or GF 109203X. Blockade of AC with 9-(tetrahydro-2′-furyl)adenine (SQ 22536) reversed the inhibitory effect of CCPA on sympathetic neurotransmitter release irrespective of whether PKC was pharmacologically activated by phorbol 12-myristate 13-acetate or was not activated, indicating a PKC-independent but AC-dependent mechanism. Direct stimulation of AC with forskolin increased NE release by ∼20%; an effect that was antagonized by either CCPA or SQ 22536. These data suggest that the adenosine A1 receptor-mediated inhibition of NE release does not involve PLC or PKC but does involve AC.


Endocrinology ◽  
2008 ◽  
Vol 149 (12) ◽  
pp. 6389-6398 ◽  
Author(s):  
Sigolène Larivière ◽  
Ghislaine Garrel-Lazayres ◽  
Violaine Simon ◽  
Norihito Shintani ◽  
Akemichi Baba ◽  
...  

Gonadotrope cells are primarily regulated by GnRH but are also targets of the pituitary adenylyl cyclase-activating polypeptide (PACAP). Although it has been reported that reciprocal interactions between both neuropeptides contribute to regulation of gonadotrope function, the underlying mechanisms remain poorly understood. In this study, we reevaluated PACAP coupling to the cAMP pathway in LβT2 gonadotrope cells and analyzed GnRH effect on PACAP signaling. We established that PACAP38 markedly increases intracellular cAMP levels (EC50 of 4.7 ± 1.3 nm) through the PACAP type 1 receptor (PAC1-R), as evidenced by pharmacological and RT-PCR studies. Interestingly, although GnRH couples to cAMP pathway in LβT2 cells, the effects of both neuropeptides were not synergistic. Instead, the GnRH agonist (GnRHa) triptorelin rapidly and strongly inhibited (70% inhibition as early as 5 min) PACAP38-induced cAMP production. Inhibition was calcium independent, mimicked by the phorbol ester phorbol 12-myristate 13-acetate, and blocked by the protein kinase C (PKC) inhibitor bisindoylmaleimide, indicating that GnRHa inhibitory action relies on PKC. Selective down-regulation of both conventional and novel PKC prevented a GnRHa effect, whereas pharmacological inhibition of conventional PKC only was ineffective, strongly suggesting the involvement of novel PKC isoforms. GnRHa did not inhibit forskolin- or cholera toxin-stimulated cAMP accumulation, suggesting that PAC1-R is the predominant target of GnRH. Accordingly, we demonstrated for the first time that GnRH increases PAC1-R phosphorylation through PKC, providing a potential molecular mechanism which may account for GnRH inhibitory effect.


1997 ◽  
Vol 324 (1) ◽  
pp. 167-175 ◽  
Author(s):  
Benjamin L. J. WEBB ◽  
Mark A. LINDSAY ◽  
Peter J. BARNES ◽  
Mark A. GIEMBYCZ

The protein kinase C (PKC) isoenzymes expressed by bovine tracheal smooth muscle (BTSM) were identified at the protein and mRNA levels. Western immunoblot analyses reliably identified PKCα, PKCβI and PKCβII. In some experiments immunoreactive bands corresponding to PKCδ, PKCϵ and PKCθ were also labelled, whereas the γ, η and ζ isoforms of PKC were never detected. Reverse transcriptase PCR of RNA extracted from BTSM using oligonucleotide primer pairs designed to recognize unique sequences in the PKC genes for which protein was absent or not reproducibly identified by immunoblotting, amplified cDNA fragments that corresponded to the predicted sizes of PKCδ, PKCϵ and PKCζ, which was confirmed by Southern blotting. Anion-exchange chromatography of the soluble fraction of BTSM following homogenization in Ca2+-free buffer resolved two major peaks of activity. Using ϵ-peptide as the substrate, the first peak of activity was dependent upon Ca2+ and 4β-PDBu (PDBu = phorbol 12,13-dibutyrate), and represented a mixture of PKCs α, βI and βII. In contrast, the second peak of activity, which eluted at much higher ionic strength, also appeared to comprise a combination of conventional PKCs that were arbitrarily denoted PKCα′, PKCβI′ and PKCβII′. However, these novel enzymes were cofactor-independent and did not bind [3H]PDBu, but were equally sensitive to the PKC inhibitor GF 109203X compared with bona fide conventional PKCs, and migrated on SDS/polyacrylamide gels as 81 kDa polypeptides. Taken together, these data suggest that PKCs α′, βI′ and βII′ represent modified, but not proteolysed, forms of their respective native enzymes that retain antibody immunoreactivity and sensitivity to PKC inhibitors, but have lost their sensitivity to Ca2+ and PDBu when ϵ-peptide is used as the substrate.


1990 ◽  
Vol 18 (2) ◽  
pp. 153-160 ◽  
Author(s):  
K. Mikawa ◽  
N. Maekawa ◽  
H. Hoshina ◽  
O. Tanaka ◽  
J. Shirakawa ◽  
...  

1998 ◽  
Vol 274 (4) ◽  
pp. C1047-C1056 ◽  
Author(s):  
Hassane Amlal ◽  
Christian LeGoff ◽  
Catherine Vernimmen ◽  
Manoocher Soleimani ◽  
Michel Paillard ◽  
...  

Cell pH was monitored in medullary thick ascending limbs to determine effects of ANG II on Na+-K+([Formula: see text])-2Cl−cotransport. ANG II at 10−16to 10−12 M inhibited 30–50% ( P < 0.005), but higher ANG II concentrations were stimulatory compared with the 10−12 M ANG II level cotransport activity; eventually, 10−6 M ANG II stimulated 34% cotransport activity ( P < 0.003). Inhibition by 10−12M ANG II was abolished by phospholipase C (PLC), diacylglycerol lipase, or cytochrome P-450-dependent monooxygenase blockade; 10−12 M ANG II had no effect additive to inhibition by 20-hydroxyeicosatetranoic acid (20-HETE). Stimulation by 10−6 M ANG II was abolished by PLC and protein kinase C (PKC) blockade and was partially suppressed when the rise in cytosolic Ca2+ was prevented. All ANG II effects were abolished by DUP-753 (losartan) but not by PD-123319. Thus ≤10−12 M ANG II inhibits via 20-HETE, whereas ≥5 × 10−11 M ANG II stimulates via PKC Na+-K+([Formula: see text])-2Cl−cotransport; all ANG II effects involve AT1 receptors and PLC activation.


1994 ◽  
Vol 131 (5) ◽  
pp. 510-515 ◽  
Author(s):  
Osamu Kozawa ◽  
Haruhiko Tokuda ◽  
Atsushi Suzuki ◽  
Jun Kotoyori ◽  
Yoshiaki Ito ◽  
...  

Kozawa O, Tokuda H, Suzuki A, Kotoyori J, Ito Y, Oiso Y. Effect of glucocorticoid on prostaglandin F2α-induced prostaglandin E2 synthesis in osteoblast-like cells: inhibition of phosphoinositide hydrolysis by phospholipase C as well as phospholipase A2. Eur J Endocrinol 1994;131:510–15. ISSN 0804–4643 It is well known that osteoporosis is a common complication of patients with glucocorticoid excess. We showed previously that prostaglandin (PG) F2α stimulates the synthesis of PGE2, a potent bone resorbing agent, and that the activation of protein kinase C amplifies the PGF2α-induced PGE2 synthesis through the potentiation of phospholipase A2 activity in osteoblast-like MC3T3-E1 cells. In the present study, we examined the effect of dexamethasone on PGE2 synthesis induced by PGF2α in MC3T3-E1 cells. The pretreatment with dexamethasone significantly inhibited the PGE2 synthesis in a dose-dependent manner in the range between 0.1 and 10 nmol/l in these cells. This effect of dexamethasone was dependent on the time of pretreatment up to 8 h. Dexamethasone also inhibited PGE2 synthesis induced by melittin, known as a phospholipase A2 activator. Furthermore, dexamethasone significantly inhibited the enhancement of PGF2α- or melittin-induced PGE2 synthesis by 12-O-tetradecanoylphorbol-13-acetate, known as a protein kinase C activator. In addition, dexamethasone significantly inhibited PGF2α-induced formation of inositol phosphates in a dose-dependent manner between 0.1 and 10 nmol/l in MC3T3-E1 cells. These results strongly suggest that glucocorticoid inhibits PGF2α-induced PGE2 synthesis through the inhibition of phosphoinositide hydrolysis by phospholipase C as well as phospholipase A2 in osteoblast-like cells. Osamu Kozawa, Department of Biochemistry, Institute for Developmental Research, Aichi Prefectural Colony, Kasugai, Aichi 480-03, Japan


2003 ◽  
Vol 31 (06) ◽  
pp. 871-878 ◽  
Author(s):  
Xianqin Qu ◽  
Lei Dang ◽  
J. Paul Seale

In this ex vivo study, the inhibitory activity of hypocrellin A (HA), a perylene quinonoid pigment isolated from the Chinese medicinal fungus Hypocrella bambuase, on protein kinase C (PKC) enzyme activity in insulin target tissues of obese Zucker rats was assessed. Pre-incubation with HA for 30 minutes significantly inhibited the activity of partially purified PKC enzyme from liver and soleus skeletal muscle in a dose-dependent manner ( IC 50=0.07 and 0.26 μg/ml, respectively). HA produced a greater inhibitory effect in enzyme prepared from the liver than enzyme prepared from soleus muscle. Since total PKC activity in these two insulin target tissues is the net result of several different isoforms of PKC, and PKC-θ is a major isoform expressed in the soleus skeletal muscle, the present data suggest that the naturally occurring compound, HA, may selectively inhibit certain PKC isoforms other than PKC-θ. Further investigations are required to determine which PKC isoforms are most susceptible to HA and whether changes in PKC signaling during treatment with HA can reverse abnormalities of glucose and lipid metabolism in insulin resistant and diabetic states.


1996 ◽  
Vol 317 (1) ◽  
pp. 291-295 ◽  
Author(s):  
Igor P. UDOVICHENKO ◽  
Jess CUNNICK ◽  
Karen GONZALEZ ◽  
Alexander YAKHNIN ◽  
Dolores J. TAKEMOTO

The inhibitory subunit (PDEγ) of the cGMP phosphodiesterase (PDEαβγ2) in rod outer segments (ROS) realizes its regulatory role in phototransduction by inhibition of PDEαβ catalytic activity. The photoreceptor G-protein, transducin, serves as a transducer from the receptor (rhodopsin) to the effector (PDE) and eliminates the inhibitory effect of PDEγ by direct interaction with PDEγ. Our previous study [Udovichenko, Cunnick, Gonzalez and Takemoto (1994) J. Biol. Chem. 269, 9850–9856] has shown that PDEγ is a substrate for protein kinase C (PKC) from ROS and that phosphorylation by PKC increases the ability of PDEγ to inhibit PDEαβ catalytic activity. Here we report that transducin is less effective in activation of PDEαβ(γp)2 (a complex of PDEαβ with phosphorylated PDEγ, PDEγp) than PDEαβγ2. PDEγp also increases the rate constant of GTP hydrolysis of transducin (from 0.16 s-1 for non-phosphorylated PDEγ to 0.21 s-1 for PDEγp). These data suggest that phosphorylation of the inhibitory subunit of PDE by PKC may regulate the visual transduction cascade by decreasing the photoresponse.


Sign in / Sign up

Export Citation Format

Share Document