Onset of glomerular hypertension with aging precedes injury in the spontaneously hypertensive rat

2000 ◽  
Vol 278 (5) ◽  
pp. F839-F846 ◽  
Author(s):  
Evelyn M. Tolbert ◽  
Joseph Weisstuch ◽  
Helen D. Feiner ◽  
Lance D. Dworkin

The changes in renal hemodynamics that develop with aging in spontaneously hypertensive rats (SHR) were examined. Micropuncture studies revealed that glomerular capillary pressure was elevated in SHR at 9 mo of age compared with 3-mo-old SHR and 9-mo-old normotensive Wistar-Kyoto rats. Glomerular hypertension developed because of a small increase in systemic blood pressure and a decline in preglomerular vascular resistance, allowing transmission of elevated systemic pressure to the glomerular capillaries. The hemodynamic alterations were not a compensatory response to injury, inasmuch as vascular and glomerular morphology were normal in 9-mo-old SHR. To determine the mechanism of these changes, the activity of several vasoactive systems was examined. Similar changes in renal hemodynamics were observed in young and old SHR after blockade of nitric oxide production and after intravenous administration of endothelin. However, ANG II produced a proportionally greater reduction in glomerular filtration rate than renal blood flow in older SHR. These data suggest that reduced endogenous activity of the renin-angiotensin system leads to glomerular hypertension in aging SHR. Late development of glomerular hypertension may contribute to the subsequent appearance of glomerular sclerosis and progressive renal failure in these rats.

2006 ◽  
Vol 290 (1) ◽  
pp. H463-H473 ◽  
Author(s):  
Bradley M. Palmer ◽  
Zengyi Chen ◽  
Richard R. Lachapelle ◽  
Edith D. Hendley ◽  
Martin M. LeWinter

We examined cardiomyocyte intracellular calcium ([Ca2+]i) dynamics and sarcomere shortening dynamics in genetic rat models of left ventricular (LV) hypertrophy associated with or without hypertension (HT) and with or without hyperactive (HA) behavior. Previous selective breeding of the spontaneously hypertensive rat (SHR) strain, which is HA and HT, with the Wistar-Kyoto (WKY) rat strain, which is not hyperactive (NA) and not hypertensive (NT), has led to two unique strains: the WKHA strain, selected for HA and NT, and the WKHT strain, selected for NA and HT. Cardiomyocytes were isolated from young adult males and females of each strain, paced at 2, 3, and 4 Hz in 1.2 mM external Ca2+ concentration at 37°C, and cardiomyocyte [Ca2+]i and sarcomere dynamics were recorded simultaneously. Under these conditions, LV cardiomyocyte systolic and diastolic [Ca2+]i dynamics and diastolic sarcomere dynamics in the WKHT were significantly enhanced compared with WKY controls, suggesting an underlying LV hypertrophic response that successfully compensated for HT in the absence of HA. LV cardiomyocyte [Ca2+]i dynamics in the WKHA and SHR were strikingly similar to each other and only slightly reduced compared with WKY. LV cardiomyocyte systolic and diastolic sarcomere dynamics, on the other hand, were significantly reduced in the SHR compare with WKHA and more so in male than in female SHR. We conclude from these data that HT alone is an insufficient descriptor of the cause of LV hypertrophy and diminished LV cardiomyocyte function in the SHR rat. These data further suggest that HA (augmented by male sex) in the SHR may interact with the HT state to initiate impaired cardiomyocyte function and thereby inhibit or undermine an otherwise compensatory response that may occur with HT in the absence of HA.


1998 ◽  
Vol 275 (2) ◽  
pp. H703-H709 ◽  
Author(s):  
N. L. Han ◽  
M. K. Sim

The binding of125I-labeled [Sar1,Ile8]angiotensin II to the hypothalamic membranes of the normotensive Wistar-Kyoto rat (WKY) and the spontaneously hypertensive rat (SHR) was studied. Displacement experiments with four centrally active angiotensins, losartan, and PD-123319 confirm the known existence of angiotensin AT1 and AT2 receptors in the rat hypothalamus. The values of the inhibitory constants for angiotensin II and PD-123319 in the SHR were significantly lower than the corresponding values in the WKY, indicating the possible existence of high-affinity hypothalamic AT1 and AT2 receptors for the two ligands in the SHR. The angiotensin AT1receptor was further separated into a 5′-guanylyl imidodiphosphate-sensitive and -nonsensitive subtype, indicating that one of the subtypes is G protein coupled. The SHR has significantly higher numbers of measurable AT1-receptor subtypes as well as AT2 receptor subtypes. The former data support the findings of other investigators showing that the hypothalamus of the SHR expressed more AT1A and AT1B mRNAs than that of the normotensive rat. Des-Asp1-angiotensin I, which is known to attenuate the central pressor action of angiotensin II and angiotensin III, acts on both the AT1 and AT2 receptors, although it has a higher affinity for the AT1receptors. The overall increase in the number of AT1 and AT2 receptors in the SHR is in line with the contention that the brain of the hypertensive rat, compared with that of the WKY, has a hyperactive renin-angiotensin system.


2016 ◽  
Vol 310 (1) ◽  
pp. R15-R23 ◽  
Author(s):  
Daniela T. B. Pereira-Derderian ◽  
Regina C. Vendramini ◽  
José V. Menani ◽  
Silvana Chiavegatto ◽  
Laurival A. De Luca

iSodium intake occurs either as a spontaneous or induced behavior, which is enhanced, i.e., sensitized, by repeated episodes of water deprivation followed by subsequent partial rehydration (WD-PR). In the present work, we examined whether repeated WD-PR alters hypothalamic transcripts related to the brain renin-angiotensin system (RAS) and apelin system in male normotensive Holtzman rats (HTZ). We also examined whether the sodium intake of a strain with genetically inherited high expression of the brain RAS, the spontaneously hypertensive rat (SHR), responds differently than HTZ to repeated WD-PR. We found that repeated WD-PR, besides enhancing spontaneous and induced 0.3 M NaCl intake, increased the hypothalamic expression of angiotensinogen, aminopeptidase N, and apelin receptor transcripts (43%, 60%, and 159%, respectively) in HTZ at the end of the third WD-PR. Repeated WD-PR did not change the daily spontaneous 0.3 M NaCl intake and barely changed the need-induced 0.3 M NaCl intake of SHR. The same treatment consistently enhanced spontaneous daily 0.3 M NaCl intake in the normotensive Wistar-Kyoto rats. The results show that repeated WD-PR produces alterations in hypothalamic transcripts and also sensitizes sodium appetite in HTZ. They suggest an association between the components of hypothalamic RAS and the apelin system, with neural and behavioral plasticity produced by repeated episodes of WD-PR in a normotensive strain. The results also indicate that the inherited hyperactive brain RAS is not a guarantee for sensitization of sodium intake in the male adult SHR exposed to repeated WD-PR.


1999 ◽  
Vol 277 (3) ◽  
pp. H1260-H1264 ◽  
Author(s):  
Michael J. Katovich ◽  
Craig H. Gelband ◽  
Phyllis Reaves ◽  
Hong-Wei Wang ◽  
Mohan K. Raizada

Pharmacological blockade of the renin-angiotensin system in both hypertensive patients and animal models such as the spontaneously hypertensive rat (SHR) effectively reduces blood pressure (BP). Recent studies have established that virally mediated delivery (vector LNSV) of antisense to the angiotensin II type 1 receptor (LNSV-AT1R-AS) will attenuate or abolish the development of hypertension in the SHR. However, the effectiveness of this gene therapy approach to reduce high BP once it is established in the adult has not been ascertained. In this study, we investigated the hypothesis that viral delivery of AT1R-AS into the adult SHR will reduce BP and reverse the vascular reactivity associated with the hypertension. Intracardiac injection of virus particles containing LNSV-AT1R-AS into adult SHR resulted in a 30- to 60-mmHg reduction in BP that was maintained for up to 36 days compared with SHR treated with virus alone (LNSV without antisense). Measurement of renal resistance arteriolar reactivity demonstrated a leftward shift in the KCl and phenylephrine concentration-response relationships and an impaired endothelium-dependent relaxation to ACh in LNSV-treated SHR compared with control Wistar-Kyoto rats. These vascular alterations were reversed in the LNSV-AT1R-AS-treated SHR. Collectively, these data demonstrate that virally mediated gene delivery of AT1R-AS can effectively reduce BP and reverse renovascular pathophysiology associated with the hypertensive state when administered to the adult SHR.


2011 ◽  
Vol 300 (6) ◽  
pp. H1990-H1996 ◽  
Author(s):  
Houli Jiang ◽  
John Quilley ◽  
Anabel B. Doumad ◽  
Angela G. Zhu ◽  
John R. Falck ◽  
...  

Epoxyeicosatrienoic acids (EETs) are vasodilator, natriuretic, and antiinflammatory lipid mediators. Both cis- and trans-EETs are stored in phospholipids and in red blood cells (RBCs) in the circulation; the maximal velocity ( Vmax) of trans-EET hydrolysis by soluble epoxide hydrolase (sEH) is threefold that of cis-EETs. Because RBCs of the spontaneously hypertensive rat (SHR) exhibit increased sEH activity, a deficiency of trans-EETs in the SHR was hypothesized to increase blood pressure (BP). This prediction was fulfilled, since sEH inhibition with cis-4-[4-(3-adamantan-1-ylureido)cyclohexyloxy]benzoic acid (AUCB; 2 mg·kg−1·day−1 for 7 days) in the SHR reduced mean BP from 176 ± 8 to 153 ± 5 mmHg ( P < 0.05), whereas BP in the control Wistar-Kyoto rat (WKY) was unaffected. Plasma levels of EETs in the SHR were lower than in the age-matched control WKY (16.4 ± 1.6 vs. 26.1 ± 1.8 ng/ml; P < 0.05). The decrease in BP in the SHR treated with AUCB was associated with an increase in plasma EETs, which was mostly accounted for by increasing trans-EET from 4.1 ± 0.2 to 7.9 ± 1.5 ng/ml ( P < 0.05). Consistent with the effect of increased plasma trans-EETs and reduced BP in the SHR, the 14,15- trans-EET was more potent (ED50 10−10 M; maximum dilation 59 ± 15 μm) than the cis-isomer (ED50 10−9 M; maximum dilation 30 ± 11 μm) in relaxing rat preconstricted arcuate arteries. The 11,12-EET cis- and trans-isomers were equipotent dilators as were the 8,9-EET isomers. In summary, inhibition of sEH resulted in a twofold increase in plasma trans-EETs and reduced mean BP in the SHR. The greater vasodilator potency of trans- vs. cis-EETs may contribute to the antihypertensive effects of sEH inhibitors.


2008 ◽  
Vol 295 (4) ◽  
pp. F1239-F1247 ◽  
Author(s):  
Alaa E. S. Abdel-Razik ◽  
Richard J. Balment ◽  
Nick Ashton

Urotensin II (UII) has been implicated widely in cardiovascular disease. The mechanism(s) through which it contributes to elevated blood pressure is unknown, but its emerging role as a regulator of mammalian renal function suggests that the kidney might be involved. The aim of this study was to determine the effect of UII on renal function in the spontaneously hypertensive rat (SHR). UII infusion (6 pmol·min−1·100 g body wt−1) in anesthetized SHR and control Wistar-Kyoto (WKY) rats produced marked reductions in glomerular filtration rate (ΔGFR WKY, n = 7, −0.3 ± 0.1 vs. SHR, n = 7, −0.6 ± 0.1 ml·min−1·100 g body wt−1, P = 0.03), urine flow, and sodium excretion rates, which were greater in SHR by comparison with WKY rats. WKY rats also showed an increase in fractional excretion of sodium (ΔFENa; +0.6 ± 0.1%, P = 0.02) in contrast to SHR in which no such change was observed (ΔFENa −0.6 ± 0.2%). Blockade of the UII receptor (UT), and thus endogenous UII activity, with urantide evoked an increase in GFR which was greater in SHR (+0.3 ± 0.1) compared with WKY rats (+0.1 ± 0.1 ml·min−1·100 g body wt−1, P = 0.04) and was accompanied by a diuresis and natriuresis. UII and UT mRNA expression were greater in the renal medulla than the cortex of both strains; however, expression levels were up to threefold higher in SHR tissue. SHR are more sensitive than WKY to UII, which acts primarily to lower GFR thus favoring salt retention in this model of hypertension.


1987 ◽  
Vol 253 (4) ◽  
pp. H909-H918 ◽  
Author(s):  
E. K. Jackson

The purpose of this study was to compare the in vivo role of adenosine as a modulator of noradrenergic neurotransmission in the spontaneously hypertensive rat (SHR) and Wistar-Kyoto control rat (WKY). In the in situ blood-perfused rat mesentery, vascular responses to periarterial (sympathetic) nerve stimulation (PNS) and to exogenous norepinephrine (NE) were enhanced in SHR compared with WKY. In both SHR and WKY, vascular responses to PNS were more sensitive to inhibition by adenosine than were responses to NE. At matched base-line vascular responses, compared with WKY, SHR were less sensitive to the inhibitory effects of adenosine on vascular responses to PNS, but SHR and WKY were equally sensitive with respect to adenosine-induced inhibition of responses to NE. Antagonism of adenosine receptors with 1,3-dipropyl-8-p-sulfophenylxanthine shifted the dose-response curve to exogenous adenosine sixfold to the right yet did not influence vascular responses to PNS or NE in either SHR or WKY. Furthermore, PNS did not alter either arterial or mesenteric venous plasma levels of adenosine in SHR or WKY, and plasma levels of adenosine in both strains were always lower than the calculated threshold level required to attenuate neurotransmission. It is concluded that in vivo 1) exogenous adenosine interferes with noradrenergic neurotransmission in both SHR and WKY; 2) SHR are less sensitive to the inhibitory effects of exogenous adenosine on noradrenergic neurotransmission than are WKY; 3) endogenous adenosine does not play a role in modulating neurotransmission in either strain under the conditions of this study; and 4) enhanced noradrenergic neurotransmission in the SHR is not due to defective modulation of neurotransmission by adenosine.


1987 ◽  
Vol 252 (3) ◽  
pp. R554-R561 ◽  
Author(s):  
W. N. Henley ◽  
A. Tucker

The mechanism by which chronic, moderate, hypobaric hypoxia attenuates systemic systolic blood pressure (SBP) in the spontaneously hypertensive rat (SHR) was investigated in a three-part study. In experiment 1, 10 wk of hypoxia (3,658 m altitude) commencing in 7-wk-old rats was partially effective in preventing the rise in SBP [hypoxic SHR (SHR-H) 154 mmHg vs. normoxic SHR (SHR-N) 180 mmHg; P less than 0.01]. When hypoxia was initiated in 5-wk-old SHR (experiments 2 and 3), protection against hypertension was nearly complete (experiment 2: SHR-H 122 mmHg vs. SHR-N 175 mmHg; P less than 0.001; experiment 3: 135 vs. 152 mmHg, respectively; P less than 0.05). Elevations in O2 consumption (VO2) and rectal temperature (Tre) in SHR vs. normotensive [Wistar-Kyoto (WKY)] rats provided evidence that the SHR is a hypermetabolic animal. Thyroid hormonal indices suggested that SHR changed from a low to high thyroid status at a time that rapid blood pressure elevation occurred; however, hypoxia did not influence thyroid status. Acute, significant decrements in VO2 and Tre in SHR-H (experiments 2 and 3) accompanied the attenuation of SBP by hypoxia, whereas large decrements in VO2 and SBP did not occur in hypoxic WKY. Timely administration of moderate hypoxia protects against the development of hypertension in the SHR. This protection may relate to a metabolic adaptation made by the hypoxic SHR.


2002 ◽  
Vol 10 (3) ◽  
pp. 199-210 ◽  
Author(s):  
Adamu Alemayehu ◽  
Laura Breen ◽  
Drahomira Krenova ◽  
Morton P. Printz

Evidence exists implying multiple blood pressure quantitative trait loci (QTL) on rat chromosome 2. To examine this possibility, four congenic strains and nine substrains were developed with varying size chromosome segments introgressed from the spontaneously hypertensive rat (SHR/lj) and normotensive Wistar-Kyoto rat (WKY/lj) onto the reciprocal genetic background. Cardiovascular phenotyping was conducted with telemetry over extended periods during standard salt (0.7%) and high-salt (8%) diets. Our results are consistent with at least three independent pressor QTL: transfer of SHR/lj alleles to WKY/lj reveals pressor QTL within D2Rat21-D2Rat27 and D2Mgh10-D2Rat62, whereas transfer of WKY/lj D2Rat161-D2Mit8 to SHR/lj reveals a depressor locus. Our results also suggest a depressor QTL in SHR/lj located within D2Rat161-D2Mgh10. Introgressed WKY/lj segments also reveal a heart rate QTL within D2Rat40-D2Rat50 which abolished salt-induced bradycardia, dependent upon adjoining SHR/lj alleles. This study confirms the presence of multiple blood pressure QTL on chromosome 2. Taken together with our other studies, we conclude that rat chromosome 2 is rich in alleles for cardiovascular and behavioral traits and for coordinated coupling between behavior and cardiovascular responses.


2006 ◽  
Vol 290 (3) ◽  
pp. H1081-H1089 ◽  
Author(s):  
Jamila Ibrahim ◽  
Ann McGee ◽  
Delyth Graham ◽  
John C. McGrath ◽  
Anna F. Dominiczak

Cerebral blood flow (CBF) is maintained constant despite changes in systemic blood pressure (BP) through multiple mechanisms of autoregulation such as vascular myogenic reactivity. Our aim was to determine myogenic characteristics of cannulated middle cerebral arteries (MCA) in male and female stroke-prone spontaneously hypertensive rats (SHRSP) and Wistar-Kyoto rats (WKY) at 12 wk of age under pressurised no-flow conditions. MCA pressure-diameter relationships (20–200 mmHg) were constructed in active (with calcium) and passive (without calcium) conditions, and myogenic and mechanical properties were determined. Myogenic reactivity in WKY ( P < 0.05) and SHRSP ( P < 0.05) males was impaired compared with their female counterparts. Comparison of SHRSP with WKY in males revealed similar myogenic reactivity, but in females SHRSP exhibited augmented myogenic reactivity ( P < 0.05). In both sexes, myogenic tone yielded at lower pressure in SHRSP compared with WKY vessels (120–140 vs. 140–180 mmHg). Stress-strain relationships and elastic moduli in WKY rats showed that vessels were stiffer in females than in males. Conversely, in SHRSP, male vessels were stiffer than female vessels. Comparison of strains in males indicated that stiffness was increased in SHRSP compared with WKY vessels, whereas the converse was observed in females. These findings demonstrate that MCA myogenic and distensibility characteristics exhibit significant sex- and strain-dependent differences. Inappropriate myogenic adaptation and augmented vascular stiffness, particularly in male SHRSP, are potential limiting factors in blood flow autoregulation and may increase the predisposition for stroke-related cerebrovascular events.


Sign in / Sign up

Export Citation Format

Share Document