Ventilatory response to inspired carbon dioxide in infants and adults

1963 ◽  
Vol 18 (5) ◽  
pp. 895-903 ◽  
Author(s):  
Mary Ellen Avery ◽  
Victor Chernick ◽  
Robert E. Dutton ◽  
Solbert Permutt

A rebreathing method was used to study the increase in ventilation with an increase in PaCOCO2 in newborn infants and adults. The response curve of infants was shifted to the left of that of adults, which is consistent with their lower initial PaCOCO2 and buffer base, and greater metabolism per kilogram of body weight. The rebreathing response curves of infants were also to the left of steady-state responses reported by others. It is postulated that nonchemical stimuli caused higher ventilation throughout the entire range of the CO2 response curves in the infants studied by rebreathing without altering the sensitivity to increases in Pco2. The change in ventilation per kilogram versus the change in PaCOCO2, the slopes of the CO2 response curves, were nearly the same in infants and adults studied by either method. This finding, when the comparison is made on the basis of body weight, suggests the sensitivity of the regulatory apparatus does not change with age, and the output of the effector apparatus, lungs and chest wall, is related to the mass of the individual. CO2 response curves; nonchemical stimuli; chemical stimuli; respiration Submitted on February 19, 1963

Author(s):  
Yosuke Yamada ◽  
Henmi Nobuhide ◽  
Hisaya Hasegawa ◽  
Shio Tsuruta ◽  
Yusuke Suganami ◽  
...  

Background Methods of evaluating the ventilatory response to CO2 (VRCO2) of the respiratory center include the steady-state and the rebreathing method. Although the rebreathing method can evaluate the respiratory center more in detail, the steady-state method has been mainly performed in infants. The aim of this study was to investigate whether we could perform the VRCO2 with the rebreathing method in normal infants. Methods The subjects were 80 normal infants. The gestational age was 39.9(39.3-40.3)weeks, and the birth body weight was 3,142 (2,851-3,451) grams. We performed the VRCO2 with Read’s rebreathing method, measuring the increase in minute volume (MV) in response to the increase in EtCO2 by rebreathing a closed circuit. The value of VRCO2 was calculated as follow: VRCO2 (mL/min/mmHg/kg) = ΔMV / ΔEtCO2 / Body weight. Results We performed the examination without adverse events. The age in days at examination was 3 (2-4), and the examination time was 150±38 seconds. The maximum EtCO2 was 51.1 (50.5-51.9) mmHg. The value of VRCO2 was 34.6 (29.3-42.8). Tidal volume had a greater effect on the increase in MV than respiratory rate (5.4 to 14.3 mL/kg, 44.1 to 55.9 /min, respectively). Conclusion This study suggests that the rebreathing method can evaluate the ventilatory response to high blood CO2 in a short examination time. We conclude that the rebreathing method is useful even in infants. In the future, we plan to measure the VRCO2 of preterm infants, and evaluate the respiratory center of infants in more detail.


2008 ◽  
Vol 08 (01) ◽  
pp. 25-40 ◽  
Author(s):  
Q.-Q. HU ◽  
C. W. LIM ◽  
L.-Q. CHEN

In this paper, the principal resonance is investigated for a cantilever with a contact end. The cantilever is modeled as an Euler–Bernoulli beam, and the contact is modeled by the Derjaguin–Müller–Toporov theory. The problem is formulated as a linear nonautonomous partial-differential equation with a nonlinear autonomous boundary condition. The method of multiple scales is applied to determine the steady-state response. The equation of response curves is derived from the solvability condition of eliminating secular terms. The stability of steady-state responses is analyzed by using the Lyapunov-linearized stability theory. Numerical examples are presented to highlight the effects of the excitation amplitude, the damping coefficient, and the coefficients related to the contact.


2011 ◽  
Vol 32 (5) ◽  
pp. 593-604 ◽  
Author(s):  
Jong Min Choi ◽  
David W. Purcell ◽  
M. Sasha John

2002 ◽  
Vol 13 (04) ◽  
pp. 205-224 ◽  
Author(s):  
Andrew Dimitrijevic ◽  
Sasha M. John ◽  
Patricia Van Roon ◽  
David W. Purcell ◽  
Julija Adamonis ◽  
...  

Multiple auditory steady-state responses were evoked by eight tonal stimuli (four per ear), with each stimulus simultaneously modulated in both amplitude and frequency. The modulation frequencies varied from 80 to 95 Hz and the carrier frequencies were 500, 1000, 2000, and 4000 Hz. For air conduction, the differences between physiologic thresholds for these mixed-modulation (MM) stimuli and behavioral thresholds for pure tones in 31 adult subjects with a sensorineural hearing impairment and 14 adult subjects with normal hearing were 14 ± 11, 5 ± 9, 5 ± 9, and 9 ± 10 dB (correlation coefficients .85, .94, .95, and .95) for the 500-, 1000-, 2000-, and 4000-Hz carrier frequencies, respectively. Similar results were obtained in subjects with simulated conductive hearing losses. Responses to stimuli presented through a forehead bone conductor showed physiologic-behavioral threshold differences of 22 ± 8, 14 ± 5, 5 ± 8, and 5 ± 10 dB for the 500-, 1000-, 2000-, and 4000-Hz carrier frequencies, respectively. These responses were attenuated by white noise presented concurrently through the bone conductor.


1983 ◽  
Vol 54 (4) ◽  
pp. 874-879 ◽  
Author(s):  
D. P. White ◽  
N. J. Douglas ◽  
C. K. Pickett ◽  
J. V. Weil ◽  
C. W. Zwillich

Previous investigation has demonstrated that progesterone, a hormone found in premenopausal women, is a ventilatory stimulant. However, fragmentary data suggest that normal women may have lower ventilatory responses to chemical stimuli than men, in whom progesterone is found at low levels. As male-female differences have not been carefully studied, we undertook a systematic comparison of resting ventilation and ventilatory responses to chemical stimuli in men and women. Resting ventilation was found to correlate closely with CO2 production in all subjects (r = 0.71, P less than 0.001), but women tended to have a greater minute ventilation per milliliter of CO2 produced (P less than 0.05) and consequently a lower CO2 partial pressure (PCO2) (men 35.1 +/- 0.5 Torr, women 33.2 +/- 0.5 Torr; P less than 0.02). Women were also found to have lower tidal volumes, even when corrected from body surface area (BSA), and greater respiratory frequency than comparable males. The hypoxic ventilatory response (HVR) quantitated by the shape parameter A was significantly greater in men [167 +/- 22 (SE)] than in women (109 +/- 13; P less than 0.05). In men this hypoxic response was found to correlate closely with O2 consumption (r = 0.75, P less than 0.001) but with no measure of size or metabolic rate in women. The hypercapnic ventilatory response, expressed as the slope of ventilation vs. PCO2, was also greater in men (2.30 +/- 0.23) than in women (1.58 +/- 0.19, P less than 0.05). Finally women tended to have higher ventilatory responses in the luteal than in the follicular menstrual phase, but this was significant only for HVR (P less than 0.05). Women, with relatively higher resting ventilation, have lower responses to hypoxia and hypercapnia.


2001 ◽  
Vol 112 (3) ◽  
pp. 555-562 ◽  
Author(s):  
M.Sasha John ◽  
Andrew Dimitrijevic ◽  
Terence W Picton

Sign in / Sign up

Export Citation Format

Share Document