Diaphragmatic muscle tone

1979 ◽  
Vol 47 (2) ◽  
pp. 279-284 ◽  
Author(s):  
N. Muller ◽  
G. Volgyesi ◽  
L. Becker ◽  
M. H. Bryan ◽  
A. C. Bryan

It is generally believed that there is a scarcity of muscle spindles in the diaphragm and that there is no tonic activity at end expiration. This conclusion is based mainly on animal studies and the difficulty in differentiating tonic electromyogram activity from noise. We have, however, found a number of muscle spindles in the newborn human diagphragm, concentrated in the region of the central tendon. We also tried to detect tonic activity by decreasing it (by rapid-eye movement (REM) sleep or anesthesia) or increasing it (with abdominal loading). During REM sleep in five infants and five adults, using subcostal electrodes were observed a marked fall in tonic activity (P less than 0.001) compared to non-REM or quiet sleep. We also observed a reduction in diaphragmatic tonic activity with halothane anesthesia (P less than 0.001). With esophageal electrodes in adult subjects, there was a rise in tonic diaphragmatic activity proportional to the amount of abdomina load (P less than 0.001). We conclude that there are muscle spindles in the human diaphragm and that there is tonic activity at end expiration.

SLEEP ◽  
2021 ◽  
Author(s):  
Andreas Brink-Kjær ◽  
Matteo Cesari ◽  
Friederike Sixel-Döring ◽  
Brit Mollenhauer ◽  
Claudia Trenkwalder ◽  
...  

Abstract Study objectives Patients diagnosed with isolated rapid eye movement (REM) sleep behavior disorder (iRBD) and Parkinson’s disease (PD) have altered sleep stability reflecting neurodegeneration in brainstem structures. We hypothesize that neurodegeneration alters the expression of cortical arousals in sleep. Methods We analyzed polysomnography data recorded from 88 healthy controls (HC), 22 iRBD patients, 82 de novo PD patients without RBD and 32 with RBD (PD+RBD). These patients were also investigated at a 2-year follow-up. Arousals were analyzed using a previously validated automatic system, which used a central EEG lead, electrooculography, and chin electromyography. Multiple linear regression models were fitted to compare group differences at baseline and change to follow-up for arousal index (ArI), shifts in electroencephalographic signals associated with arousals, and arousal chin muscle tone. The regression models were adjusted for known covariates affecting the nature of arousal. Results In comparison to HC, patients with iRBD and PD+RBD showed increased ArI during REM sleep and their arousals showed a significantly lower shift in α-band power at arousals and a higher muscle tone during arousals. In comparison to HC, the PD patients were characterized by a decreased ArI in NREM sleep at baseline. ArI during NREM sleep decreased further at the 2-year follow-up, although not significantly Conclusions Patients with PD and iRBD present with abnormal arousal characteristics as scored by an automated method. These abnormalities are likely to be caused by neurodegeneration of the reticular activation system due to alpha-synuclein aggregation.


1970 ◽  
Vol 117 (541) ◽  
pp. 705-706 ◽  
Author(s):  
Donald W. Goodwin ◽  
Frank Freemon ◽  
Benjamin M. Ianzito ◽  
Ekkehard Othmer

Narcolepsy is a syndrome characterized by recurrent sleep attacks and one or more of the following symptoms: cataplexy (transient loss of muscle tone), sleep paralysis (inability to move in the transition between sleep and arousal), and hypnagogic hallucinations (Sours, 1963). Polygraphic sleep studies indicate that narcoleptics have an abnormal sleep record. Normally, rapid eye movement (REM) sleep is preceded by 90 to 100 minutes of non-REM sleep, whereas narcoleptics often have an REM-period at the onset of sleep (Hishikawa and Kaneki, 1965; Rechtschaffen et al., 1963).


PEDIATRICS ◽  
1980 ◽  
Vol 66 (3) ◽  
pp. 425-428
Author(s):  
Peter J. Fleming ◽  
Darlene Cade ◽  
M. Heather Bryan ◽  
A. Charles Bryan

Congenital central hypoventilation (Ondine's curse) is described in an infant with persistant symptoms throughout the first nine months of life. Respiratory control was most severely affected in quiet sleep, although abnormalities were present in rapid eye movement (REM) sleep and while awake. Failure of metabolic control in quiet sleep led to profound hypoventilation. Behavioral or "behavioral-like" inputs in the awake state and REM sleep increased ventilation, but not to expected normal levels. The ventilatory response to inhaled 4% CO2 was markedly depressed in all states.


1989 ◽  
Vol 256 (2) ◽  
pp. H434-H440 ◽  
Author(s):  
R. S. Horne ◽  
P. J. Berger ◽  
G. Bowes ◽  
A. M. Walker

To examine whether hypotension reflexly initiates arousal from sleep and the mechanisms involved, we subjected sleeping lambs to hypotensive stimuli of 1-min duration, before and after sinoaortic denervation (SAD). In intact lambs, hypotension increased the probability of arousal from both quiet sleep (QS) and rapid-eye-movement (REM) sleep. Hypotension resulted in nonarousal in 42% (QS) and 47% (REM) of tests. Arousal time was significantly longer in REM (34.9 +/- 1.8 s, means +/- SE) than in QS (26.0 +/- 1.8 s). Arterial saturation of O2 (SO2) and PO2 measured at the point of arousal were unchanged from control values in those tests in which arousal occurred. In nonarousal tests, there was a significant fall in both SO2 (4.9 +/- 1.2%) and PO2 (21.6 +/- 4.2 mmHg). After SAD, hypotension did not increase the probability of arousal. Nonarousals significantly increased to 75% (QS and REM, P less than 0.02). We conclude that acute hypotension is a potent stimulus for arousal from sleep in newborn lambs. As the arousal response is abolished by SAD and is not correlated with arterial oxygenation, hypotensive arousal appears to be mediated via arterial baroreceptors.


2010 ◽  
Vol 104 (4) ◽  
pp. 2024-2033 ◽  
Author(s):  
Yuan-Yang Lai ◽  
Tohru Kodama ◽  
Elizabeth Schenkel ◽  
Jerome M. Siegel

Activation of the medial medulla is responsible for rapid eye movement (REM) sleep atonia and cataplexy. Dysfunction can cause REM sleep behavior disorder and other motor pathologies. Here we report the behavioral effects of stimulation of the nucleus gigantocellularis (NGC) and nucleus magnocellularis (NMC) in unrestrained cats. In waking, 62% of the medial medullary stimulation sites suppressed muscle tone. In contrast, stimulation at all sites, including sites where stimulation produced no change or increased muscle tone in waking, produced decreased muscle tone during slow-wave sleep. In the decerebrate cat electrical stimulation of the NGC increased glycine and decreased norepinephrine (NE) release in the lumbar ventral horn, with no change in γ-aminobutyric acid (GABA) or serotonin (5-HT) release. Stimulation of the NMC increased both glycine and GABA release and also decreased both NE and 5-HT release in the ventral horn. Glutamate levels in the ventral horn were not changed by either NGC or NMC stimulation. We conclude that NGC and NMC play neurochemically distinct but synergistic roles in the modulation of motor activity across the sleep–wake cycle via a combination of increased release of glycine and GABA and decreased release of 5-HT and NE. Stimulation of the medial medulla that elicited muscle tone suppression also triggered rapid eye movements, but never produced the phasic twitches that characterize REM sleep, indicating that the twitching and rapid eye movement generators of REM sleep have separate brain stem substrates.


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 159-159
Author(s):  
Tiana Broen ◽  
Tomiko Yoneda ◽  
Jonathan Rush ◽  
Jamie Knight ◽  
Nathan Lewis ◽  
...  

Abstract Previous cross-sectional research suggests that age-related decreases in Rapid-Eye Movement (REM) sleep may contribute to poorer cognitive functioning (CF); however, few studies have examined the relationship at the intraindividual level by measuring habitual sleep over multiple days. Applying a 14-day daily diary design, the current study examines the dynamic relationship between REM sleep and CF in 69 healthy older adults (M age=70.8 years, SD=3.37; 73.9% female; 66.6% completed at least an undergraduate degree). A Fitbit device provided actigraphy indices of REM sleep (minutes and percentage of total sleep time), while CF was measured four times daily on a smartphone via ambulatory cognitive tests that captured processing speed and working memory. This research addressed the following questions: At the within-person level, are fluctuations in quantity of REM sleep associated with fluctuations in next day cognitive measures across days? Do individuals who spend more time in REM sleep on average, perform better on cognitive tests than adults who spend less time in REM sleep? A series of multilevel models were fit to examine the extent to which each index of sleep accounted for daily fluctuations in performance on next day cognitive tests. Results indicated that during nights when individuals had more REM sleep minutes than was typical, they performed better on the working memory task the next morning (estimate = -.003, SE = .002, p = .02). These results highlight the impact of REM sleep on CF, and further research may allow for targeted interventions for earlier treatment of sleep-related cognitive impairment.


Sign in / Sign up

Export Citation Format

Share Document