Leukotriene synthesis and receptor blockers block hypoxic pulmonary vasoconstriction

1984 ◽  
Vol 56 (5) ◽  
pp. 1340-1346 ◽  
Author(s):  
M. L. Morganroth ◽  
J. T. Reeves ◽  
R. C. Murphy ◽  
N. F. Voelkel

We hypothesized that leukotrienes are involved in hypoxic pulmonary vasoconstriction, since they are pulmonary vasoconstrictors and cells capable of producing leukotrienes are located in the lung near resistance vessels. We investigated in isolated perfused rat lungs whether three structurally unrelated blockers [diethylcarbamazine citrate (DEC), U-60257, and FPL 55712] of leukotriene synthesis or action block hypoxic pulmonary vasoconstriction. DEC blocked ongoing and subsequent hypoxic pressor responses while minimally affecting the angiotensin II pressor response. The inhibition of the hypoxic pressor response by DEC was not affected by cyclooxygenase or H1-receptor blockers. Potassium-induced vasoconstriction, which is dependent on calcium entry, was largely blocked by verapamil but not by DEC, suggesting that DEC was not acting primarily as a calcium-entry blocker. U-60257 blocked the hypoxic pressor response without inhibiting the pressor response to angiotensin II or potassium chloride. FPL 55712, a leukotriene end-organ blocker, in a dose which inhibited vasoconstriction caused by exogenous leukotriene C4, inhibited the pressor response to hypoxia but not to angiotensin II. We conclude that leukotriene inhibitors preferentially inhibit hypoxic pulmonary vasoconstriction in isolated perfused adult rat lungs.

1985 ◽  
Vol 248 (1) ◽  
pp. H55-H60 ◽  
Author(s):  
J. Herget ◽  
I. F. McMurtry

It can be postulated that inhibition of lung tissue Na+-K+-ATPase might potentiate hypoxic pulmonary vasoconstriction by depolarizing some excitable cell or, in contrast, that it might blunt the hypoxic response by reducing cellular metabolic rate and sensitivity to hypoxia. Thus the purpose of this study was to test in isolated rat lungs whether hypoxic pressor reactivity was related inversely or positively to Na+-K+-ATPase activity. Dose-pressor response curves to hypoxia, angiotensin II, or KCl were measured under control conditions and after exposure either to one of two inhibitors of Na+-K+-ATPase, ouabain, and low-K+ solution or to a stimulator of Na+-K+ pumping, aldosterone. Ouabain and low K+ depressed the response to hypoxia but had little effect on that to angiotensin II. The response to KCl was increased by ouabain. Aldosterone potentiated the hypoxic response. These results do not support the idea that membrane depolarization due to inhibition Na+-K+ pumping is a component of hypoxic vasoconstriction. They do suggest a positive relationship between Na+-K+-ATPase activity and hypoxic pressor reactivity and are consistent with the idea that Na+-K+-ATPase activity might influence hypoxic reactivity indirectly by altering cellular energy metabolism. It is also possible that the results were somehow due to changes in intracellular [Na+] or transmembrane Na+ gradient, rather than to changes in energy metabolism.


1992 ◽  
Vol 82 (3) ◽  
pp. 259-264 ◽  
Author(s):  
David G. McCormack ◽  
David E. Crawley ◽  
Peter J. Barnes ◽  
Timothy W. Evans

1. The role of platelet-activating factor in the attenuated hypoxic pulmonary vasoconstriction associated with lung injury was evaluated using specific platelet-activating factor antagonists and an isolated perfused lung preparation. 2. Intratracheal bleomycin was administered to rats to produce acute lung injury. Animals received intratracheal saline (control), intratracheal bleomycin or the platelet-activating factor anatagonists BN 52021, WEB 2170 or WEB 2086 before and after bleomycin treatment. Forty-eight hours after intratracheal administration of bleomycin or saline the animals were killed. 3. The increases in pulmonary artery pressure during two periods of hypoxic ventilation and in response to 0.2 μg of angiotensin II were measured. Acetylcholine-induced vasodilatation after pre-constriction with prostaglandin F2α was also measured. To quantify lung injury, the wet/ dry ratio of lung weight was determined. 4. Bleomycin treatment attenuated the first and second hypoxic pressor responses by 93% and 77%, respectively, but not the pressor response to angiotensin II nor the vasodilator response to acetylcholine. BN 52021 plus bleomycin augmented the first hypoxic pressor response compared with bleomycin treatment alone, but the structurally unrelated platelet-activating factor antagonists WEB 2170 and WEB 2086 had no significant effect on the bleomycin-induced attenuation of hypoxic pulmonary vasoconstriction. None of the platelet-activating factor antagonists blocked the increase in the wet/dry lung weight ratio induced by bleomycin. 5. Bleomycin-induced lung injury selectively attenuates hypoxic pulmonary vasoconstriction, an effect that does not appear to be mediated by platelet-activating factor. The mechanism remains to be elucidated, but may involve destruction of the hypoxic ‘sensor’ within the respiratory tract.


1992 ◽  
Vol 263 (4) ◽  
pp. L446-L453 ◽  
Author(s):  
S. W. Chang ◽  
D. Dutton ◽  
H. L. Wang ◽  
L. S. He ◽  
R. Stearns ◽  
...  

Lung cytochrome P-450 has been suggested to play a role in hypoxic pulmonary vasoconstriction. We reexamined this hypothesis using specific suicide substrate inhibitors of cytochrome P-450, 1-aminobenzotriazole (1-ABT), and chloramphenicol. In isolated, blood-perfused rat lungs, 1-ABT (0.5 mg/ml) and chloramphenicol (1 mg/ml) inhibited lung microsomal cytochrome P-450 (ethoxycoumarin O-deethylase) activity to 24 and 44% of control, respectively, and blunted hypoxia and angiotensin II-induced vasoconstriction. The depression of vascular contraction by 1-ABT was not due to an effect on calcium channels, since similar concentrations of 1-ABT had no inhibitory activity on electrical field-stimulated contractile response in rabbit papillary muscle strips. However, when 1-ABT was washed out of the lung after preincubation, the vascular reactivity to hypoxia and angiotensin II was restored despite persistent depression of lung cytochrome P-450 activity to 26% of control values. In isolated rat aortic and pulmonary arterial rings, addition of 1-ABT or metyrapone to the organ bath acutely reversed norepinephrine-induced contraction but preincubation with 1-ABT, metyrapone, or chloramphenicol had no effect on subsequent norepinephrine contractions. We conclude that 1-ABT inhibited lung vascular reactivity by a mechanism independent of cytochrome P-450 inhibition or calcium channel blockade and that an intact lung cytochrome P-450 system is not required for hypoxic pulmonary vasoconstriction in rat lungs.


1985 ◽  
Vol 249 (4) ◽  
pp. H741-H746 ◽  
Author(s):  
I. F. McMurtry

The susceptibility of hypoxic pulmonary vasoconstriction to inhibition by Ca2+ channel antagonists suggests that membrane depolarization and Ca2+ influx are components of the hypoxic mechanism. Recent characterization of BAY K 8644 as a 1,4-dihydropyridine that facilitates Ca2+ influx through partially activated voltage-dependent Ca2+ channels provides a new pharmacological tool to further test this idea. Effects of BAY K 8644 on normoxic vascular tone and on hypoxic and angiotensin II-induced vasoconstriction were examined in isolated rat lungs perfused with either blood or physiological salt solution (PSS) containing meclofenamate. Parallel experiments were performed with the Ca2+ ionophore A23187 for comparison with a Ca2+-active agent that does not act selectively on the voltage-dependent Ca2+ channel. Addition of BAY K 8644 (10(-7) to 10(-5) M) to the perfusate did not alter base-line vascular tone of the normoxic lung, but it potentiated hypoxic and angiotensin II pressor responses. For example, addition of 10(-7) M BAY K 8644 to five PSS-perfused lungs increased the hypoxic (5% O2) pressor response from 8.7 +/- 2.1 to 19.5 +/- 4.2 Torr and the angiotensin II (0.1 micrograms) response from 2.1 +/- 0.4 to 6.5 +/- 2.0 Torr. In contrast, addition of A23187 (10(-7) to 10(-6) M) to the perfusate increased normoxic perfusion pressure and inhibited hypoxic vasoconstriction. The respective effects of BAY K 8644 and A23187 were essentially the same in both blood- and PSS-perfused lungs. These results indicate that a Ca2+ channel facilitator and a Ca2+ ionophore have diametric effects on pulmonary vasoreactivity. The marked potentiation of hypoxic vasoconstriction by BAY K 8644 supports the idea that activation of voltage-dependent Ca2+ channels is an important component of the mechanism of hypoxic pulmonary vasoconstriction.


1993 ◽  
Vol 265 (5) ◽  
pp. H1523-H1528 ◽  
Author(s):  
D. G. McCormack ◽  
N. A. Paterson

In pulmonary inflammatory processes such as pneumonia there is diminished hypoxic pulmonary vasoconstriction (HPV). We investigated whether the attenuated HPV in pneumonia is a due to excess nitric oxide (NO) release. Sprague-Dawley rats were anesthetized, and a slurry (0.06 ml) of infected agar beads (containing 6 x 10(5) Pseudomonas aeruginosa organisms) or control (sterile) beads was then injected into a distal bronchus through a tracheotomy. After the establishment of a chronic P. aeruginosa pneumonia (7-10 days later) animals were instrumented for hemodynamic monitoring, and the response to exposure to hypoxic gas (fraction of inspired O2 = 0.08) was recorded before and after the administration of NG-monomethyl-L-arginine (L-NMMA; 50 mg/kg), an inhibitor of NO synthesis. The hypoxic pressor response, as assessed by the absolute increase in pulmonary arterial pressure (PAP) and total pulmonary resistance (TPR), was reduced in infected animals compared with control animals. The change in PAP and TPR was 8.5 +/- 0.7 and 0.053 +/- 0.007, respectively, in control animals compared with 5.9 +/- 0.5 and 0.041 +/- 0.011 in infected animals. After L-NMMA the increase in PAP and TPR during hypoxia was greater in both control and infected animals. However, treatment with L-NMMA did not affect the difference between control and infected animals. We conclude that excess release of NO does not account for the attenuated hypoxic pressor response in pneumonia.


1990 ◽  
Vol 68 (1) ◽  
pp. 253-259 ◽  
Author(s):  
C. M. Tseng ◽  
M. McGeady ◽  
T. Privett ◽  
A. Dunn ◽  
J. T. Sylvester

To evaluate leukotriene (LT) C4 as a mediator of hypoxic pulmonary vasoconstriction, we examined the effects of FPL55712, a putative LT antagonist, and indomethacin, a cyclooxygenase inhibitor, on vasopressor responses to LTC4 and hypoxia (inspired O2 tension = 25 Torr) in isolated ferret lungs perfused with a constant flow (50 ml.kg-1.min-1). Pulmonary arterial injections of LTC4 caused dose-related increases in pulmonary arterial pressure during perfusion with physiological salt solution containing Ficoll (4 g/dl). FPL55712 caused concentration-related inhibition of the pressor response to LTC4 (0.6 micrograms). Although 10 micrograms/ml FPL55712 inhibited the LTC4 pressor response by 61%, it did not alter the response to hypoxia. At 100 microgram/ml, FPL55712 inhibited the responses to LTC4 and hypoxia by 73 and 71%, respectively, but also attenuated the vasoconstrictor responses to prostaglandin F2 alpha (78% at 8 micrograms), phenylephrine (68% at 100 micrograms), and KCl (51% at 40 mM). At 0.5 microgram/ml, indomethacin significantly attenuated the pressor response to arachidonic acid but did not alter responses to LTC4 or hypoxia. These results suggest that in isolated ferret lungs 1) the vasoconstrictor response to LTC4 did not depend on release of cyclooxygenase products and 2) LTC4 did not mediate hypoxic vasoconstriction.


1976 ◽  
Vol 41 (5) ◽  
pp. 714-718 ◽  
Author(s):  
E. K. Weir ◽  
I. F. McMurtry ◽  
A. Tucker ◽  
J. T. Reeves ◽  
R. F. Grover

Prostaglandins are naturally occurring substances with powerful vasoactive effects that are released from tissues during hypoxia or ischemia. Several workers have suggested that a prostaglandin may help to mediate the pulmonary vascular pressor response to alveolar hypoxia. To investigate this possibility, we have measured the pressor responses to hypoxia before and after prostaglandin synthesis antagonism with meclofenamate in eight anesthetized dogs, two groups of awake calves (n=10 and =5), and nine isolated, perfused rat lungs. In addition, synthesis was inhibited by the use of indomethacin in nine additional dogs. The stability of the pulmonary vascular response to repeated hypoxic challenges was demonstrated in nine other dogs. In each species and with both prostaglandin antagonists, the pulmonary pressorresponses to hypoxia were significantly increased rather than reduced. We conclude that prostaglandins do not mediate the pulmonary vasoconstriction caused by hypoxia. The consistent increase observed suggests that hypoxic vasoconstriction stimulates prostaglandin synthesis, the net effect of which is pulmonary vasodilatation which opposes the constriction.


1984 ◽  
Vol 57 (2) ◽  
pp. 545-550 ◽  
Author(s):  
C. Marshall ◽  
L. Lindgren ◽  
B. E. Marshall

Hypoxic pulmonary vasoconstriction (HPV) was studied in the ventilated-perfused rat lung in vitro. Respiratory acidosis and alkalosis were obtained by ventilating with 2, 7, or 10% CO2 (21% O2-balance N2). Metabolic acidosis and alkalosis were produced by the addition of 0.9 N NaHCO3 or 1 N lactic acid to the perfusate at constant PCO2. At each pH the pressor responses to 2 and 4% O2 were compared with the maximum pressor response (R%max) obtained with zero O2 and 5% CO2 at a normal pH (approximately 7.35). HPV was maximal when the [H+] was between 38 and 50 nM and was attenuated by changes of pH in either direction. Both respiratory and metabolic pH changes had similar effects. The combined linear regression equations were as follows: with 2% O2 the response to acidosis was R%max = 101.37 – 0.52 [H+] and to alkalosis was R%max = 2.03 [H+] - 3.85; with 4% O2 the response to acidosis was R%max = 56.88 – 0.3 [H+] and to alkalosis was R%max = 1.16 [H+] - 4.95. These effects were not due to changes of ionized calcium.


1978 ◽  
Vol 44 (1) ◽  
pp. 76-80 ◽  
Author(s):  
R. C. Doekel ◽  
E. K. Weir ◽  
R. Looga ◽  
R. F. Grover ◽  
J. T. Reeves

Pulmonary and systemic hemodynamics and arterial blood gases were measured in anesthetized and mechanically ventilated dogs before and after oral or intravenous administration of ethanol. Increases in mean pulmonary artery pressure and pulmonary vascular resistance occurred. Platelet antiserum-induced thrombocytopenia inhibition of prostaglandin synthesis with meclofenamate, or alpha-adrenergic blockade did not alter the pulmonary pressor response to ethanol. However, the increase in resistance following ethanol was abolished by hyperoxia and potentiated by hypoxia. Thus, it appears that the effect of ethanol is to augment hypoxic pulmonary vasoconstriction, whereas ethanol per se has no independent pulmonary pressor activity.


Sign in / Sign up

Export Citation Format

Share Document