Speed of stress wave propagation in lung

1986 ◽  
Vol 61 (2) ◽  
pp. 701-705 ◽  
Author(s):  
R. T. Yen ◽  
Y. C. Fung ◽  
H. H. Ho ◽  
G. Butterman

The speed of stress waves in the lung parenchyma was investigated to understand why, among all internal organs, the lung is the most easily injured when an animal is subjected to an impact loading. The speed of the sound is much less in the lung than that in other organs. To analyze the dynamic response of the lung to impact loading, it is necessary to know the speed of internal wave propagation. Excised lungs of the rabbit and the goat were impacted with water jet at dynamic pressure in the range of 7–35 kPa (1–5 psi) and surface velocity of 1–15 m/s. The stress wave was measured by pressure transducer. The distance between the point of impact and the sensor at another point on the far side of the lung and the transit time of the stress wave were measured. The wave speed in the goat lung was found to vary from 31.4 to 64.7 m/s when the transpulmonary pressure Pa-Ppl was varied from 0 to 20 cmH2O where Pa represents airway pressure and Ppl represents pleural pressure. In rabbit lung the wave speed varied from 16.5 to 36.9 m/s when Pa-Ppl was varied from 0 to 16 cmH2O. Using measured values of the bulk modulus, shear modulus, and density of the parenchyma, reasonable agreement between theoretical and experimental wave speeds were obtained.

2010 ◽  
Vol 70 (12) ◽  
pp. 1669-1673 ◽  
Author(s):  
Yangwei Wang ◽  
Fuchi Wang ◽  
Xiaodong Yu ◽  
Zhuang Ma ◽  
Jubin Gao ◽  
...  

2012 ◽  
Vol 170-173 ◽  
pp. 511-515
Author(s):  
Jin Yu ◽  
Yan Yan Cai ◽  
Bo Xue Song ◽  
Xu Chen

The research of stress wave propagation law under cracked rock has important theoretical value and practical significance. Because of the discontinuity, nonelasticity and nonlinearity of the cracks, the theoretical interpretation and mechanism research about tress wave propagation law are a great challenge to researchers for a long time. From the establishment of the research method, the determination of mathematic model of micro-cracks and the main solutions, this paper brief reviews the current development of the influence of the complicated micro-cracks on stress wave propagation law.


Sign in / Sign up

Export Citation Format

Share Document