Effects of hypercapnia and hypoxemia on fetal breathing after decortication

1986 ◽  
Vol 61 (3) ◽  
pp. 1071-1076 ◽  
Author(s):  
S. Ioffe ◽  
A. H. Jansen ◽  
V. Chernick

The effects of hypercapnia and hypoxemia on breathing movements were studied in 12 chronically decorticated fetal sheep, 127–140 days gestation. The fetal state of consciousness was defined in terms of activity of the lateral rectus and nuchal muscles. Arterial blood pressure was monitored. Fetal breathing was determined by integrated diaphragmatic electromyogram (EMG) and analyzed in terms of inspiratory time (TI), expiratory time (TE), electrical equivalent of tidal volume (EVT), breath interval (TT), duty cycle (TI/TT), mean inspiratory flow equivalent (EVT/TI), and instantaneous ventilation equivalent (EVT/TT). Fetal breathing occurred only during episodes of rapid-eye movements, and the response to hypercapnia consisted of an increase in EVT, TI, EVE, and EVT/TI and a decrease in the coefficient of variation of all measured parameters. Induction of hypoxia during episodes of spontaneous fetal breathing produced a decrease in the rate of breathing and an increase in EVT and TI with no change in the variability of all parameters studied. Since similar responses to hypercapnia and hypoxemia are seen in the intact fetus, we conclude that the cerebral cortex has no obvious effect on the chemical control of fetal breathing.

1988 ◽  
Vol 65 (6) ◽  
pp. 2420-2426 ◽  
Author(s):  
A. D. Bocking ◽  
R. Gagnon ◽  
K. M. Milne ◽  
S. E. White

Experiments were conducted in unanesthetized, chronically catheterized pregnant sheep to determine the fetal behavioral response to prolonged hypoxemia produced by restricting uterine blood flow. Uterine blood flow was reduced by adjusting a vascular occluder placed around the maternal common internal iliac artery to decrease fetal arterial O2 content from 6.1 +/- 0.3 to 4.1 +/- 0.3 ml/dl for 48 h. Associated with the decrease in fetal O2 content, there was a slight increase in fetal arterial PCO2 and decrease in pH, which were both transient. There was an initial inhibition of both fetal breathing movements and eye movements but no change in the pattern of electrocortical activity. After this initial inhibition there was a return to normal incidence of both fetal breathing movements and eye movements by 16 h of the prolonged hypoxemia. These studies indicate that the chronically catheterized sheep fetus is able to adapt behaviorally to a prolonged decrease in arterial O2 content secondary to the restriction of uterine blood flow.


Author(s):  
Juulia Lantto ◽  
Tiina Erkinaro ◽  
Mervi Haapsamo ◽  
Heikki Huhta ◽  
Leena Alanne ◽  
...  

A drop in arterial oxygen content activates fetal chemoreflex including an increase in sympathetic activity leading to peripheral vasoconstriction and redistribution of blood flow to protect the brain, myocardium, and adrenal glands. By using a chronically instrumented fetal sheep model with intact placental circulation at near-term gestation, we investigated the relationship between peripheral chemoreflex activation induced by hypoxemia and central hemodynamics. 17 Åland landrace sheep fetuses at 115-128/145 gestational days were instrumented. Carotid artery was catheterised in 10 fetuses and descending aorta in 7 fetuses. After a 4-day recovery, baseline measurements of fetal arterial blood pressures, blood gas values, and fetal cardiovascular hemodynamics by pulsed Doppler ultrasonography were obtained under isoflurane-anesthesia. Comparable data to baseline was collected 10 (acute hypoxemia) and 60 minutes (prolonged hypoxemia) after maternal hypo-oxygenation to saturation level of 70-80% was achieved. During prolonged hypoxemia, pH and base excess (BE) were lower, and lactate levels higher in the descending aorta than in the carotid artery. During hypoxemia mean arterial blood pressure (MAP) in the descending aorta increased, while in the carotid artery MAP decreased. In addition, right pulmonary artery pulsatility index values increased, and the diastolic component in the aortic isthmus blood flow velocity waveform became more retrograde. Both fetal ventricular cardiac outputs were maintained even during prolonged hypoxemia when significant fetal metabolic acidemia developed. Fetal chemoreflex activation induced by hypoxemia decreased the perfusion pressure in the cerebral circulation. Fetal weight-indexed LVCO or AoI Net Flow-ratio did not correlate with a drop in carotid artery blood pressure.


1990 ◽  
Vol 68 (2) ◽  
pp. 489-495 ◽  
Author(s):  
B. J. Koos ◽  
K. Matsuda

The possibility that adenosine mediates hypoxic inhibition of fetal breathing and eye movements was tested in nine chronically catheterized fetal sheep (0.8 term). Intracarotid infusion of adenosine (0.25 +/- 0.03 mg.min-1.kg-1) for 1 h to the fetus increased heart rate and hemoglobin concentration but did not significantly affect mean arterial pressure or blood gases. As with hypoxia, adenosine decreased the incidence of rapid eye movements by 55% and the incidence of breathing by 77% without significantly affecting the incidence of low-voltage electrocortical activity. However, with longer (9 h) administration, the incidence of breathing and eye movements returned to normal during the adenosine infusion. Intravenous infusion of theophylline, an adenosine receptor antagonist, prevented most of the reduction in the incidence of breathing and eye movements normally seen during severe hypoxia (delta arterial PO2 = -10 Torr). It is concluded that 1) adenosine likely depresses fetal breathing and eye movements during hypoxia and 2) downregulation of adenosine receptors may contribute to the adaptation of breathing and eye movements during prolonged hypoxia.


1987 ◽  
Vol 63 (4) ◽  
pp. 1463-1468 ◽  
Author(s):  
B. J. Koos ◽  
H. Sameshima ◽  
G. G. Power

Graded anemia was produced for 2 h in 10 unanesthetized fetal sheep by infusing plasma in exchange for fetal blood. This reduced the mean fetal hematocrits during the 1st h of anemia to 19.7 +/- 0.5% [control (C) = 28.2 +/- 1.1%] for mild anemia, 17.4 +/- 0.9% (C = 30.0 +/- 1.1%) for moderate anemia, and 15.1 +/- 1.0% (C = 29.2 +/- 1.3%) for severe anemia. The respective mean arterial O2 contents (CaO2) were 4.46 +/- 0.20, 3.89 +/- 0.24, and 3.22 +/- 0.19 ml/dl. Mean arterial PO2 was reduced significantly (by 2 Torr) only during moderate anemia, and mean arterial pH was decreased only during severe anemia. No significant changes occurred in arterial PCO2. Fetal tachycardia occurred during anemia. Mean arterial pressure was reduced by 2–3 mmHg during mild anemia; however, no significant blood pressure changes were observed for moderate or severe anemia. The incidence of rapid-eye movements and breathing activity was not affected by mild anemia, but the incidence of both was reduced significantly during moderate and severe anemia. It is concluded that 1) a reduction in CaO2 of greater than 2.48 +/- 0.22 ml/dl by hemodilution inhibits rapid-eye movements and breathing activity, and 2) the PO2 signal for inhibition does not come from arterial blood but from lower PO2 in tissue.


1990 ◽  
Vol 68 (12) ◽  
pp. 1527-1532 ◽  
Author(s):  
Kozo Akagi ◽  
John R. G. Challis

We examined whether there was a minimal change in fetal arterial [Formula: see text] necessary to elicit alterations in plasma adrenocorticotropic hormone, arginine vasopressin, or cortisol or to affect the incidence of breathing movements or eye movements in fetal sheep at 106–117 days of gestation. Fetal sheep were exposed to two levels of hypoxemia, mild (4.1 mmHg [Formula: see text] drop) (1 mmHg = 133.32 Pa) and moderate (8.4 mmHg [Formula: see text] drop), for 1 h without acidemia. Hypoxemia was induced by altering the inspired percent oxygen of the mother. No significant hormonal and biophysical changes were observed in mild hypoxemia. In moderate hypoxemia, there were significant increases of fetal adrenocorticotropic hormone and arginine vasopressin and decreased incidence of fetal breathing movements. However, there were no significant changes in cortisol or eye movements. We conclude that a fetal arterial [Formula: see text] drop of between 4.1 and 8.4 mmHg is necessary to elicit responses to hypoxemia in fetal sheep at 106–117 days of gestation in adrenocorticotropic hormone, arginine vasopressin, and fetal breathing movements, but this degree of hypoxemia does not cause changes in cortisol or fetal eye movements.Key words: fetal sheep, hypoxemia, adrenocorticotropic hormone, arginine vasopressin, cortisol, fetal breathing movements, fetal eye movements.


2016 ◽  
Vol 40 (5) ◽  
pp. 1186-1197 ◽  
Author(s):  
He Li ◽  
Xian Liu ◽  
Zhongqiao Ren ◽  
Jinxia Gu ◽  
Yingjie Lu ◽  
...  

Background/Aims: Hypertension is a major cause of stroke, and diabetes can increase incidence of this disease. We determined the role played by central angiotensin-(1-7) [Ang-(1-7)] pathway in modulating spontaneously hypertension with diabetic hyperglycemia. Methods: Western Blot analysis and ELISA were used to determine the protein expression of Ang-(1-7) and its signal pathway Mas-R-nNOS in the cerebral cortex and hippocampus of spontaneously hypertensive rats (SHR) and control animals. In a subset of animals, diabetic hyperglycemia was induced by systemic injection of streptozotocin (STZ). We analyzed a relationship between the levels of central Ang-(1-7) and plasma brain natriuretic peptide (BNP) indicating a risk of ischemic stroke. We further examined the effects of Ang-(1-7) on arterial blood pressure. Results: Our findings demonstrated for the first time that administration of STZ 1) attenuates the levels of Ang-(1-7) in the cerebral cortex and hippocampus, which are closely linked to plasma BNP; and 2) leads to downregulation of central Ang-(1-7)-Mas-R-nNOS pathways. Notably, STZ has greater effects in SHR. Additionally, inhibition of oxidative stress can largely improve downregulation of Ang-(1-7) in diabetic SHR. Moreover, central stimulation of Ang-(1-7) pathway or a blockade of oxidative stress improves systolic blood pressure in diabetic SHR. Conclusions: The Ang-(1-7) signaling pathway is engaged in the adaptive mechanisms associated with diabetic hypertension, suggesting that enhancing Ang-(1-7)-Mas-R-nNOS system is likely to be beneficial in preventing against cardiovascular and cerebrovascular dysfunction and vulnerability related to spontaneously hypertension, particularly to diabetic hypertension.


1999 ◽  
Vol 276 (1) ◽  
pp. H248-H256 ◽  
Author(s):  
Nobuya Unno ◽  
Chi H. Wong ◽  
Susan L. Jenkins ◽  
Richard A. Wentworth ◽  
Xiu-Ying Ding ◽  
...  

Ontogenic changes in baseline and 24-h rhythms of fetal arterial blood pressure (FABP) and heart rate (FHR) and their regulation by the fetal adrenal were studied in 18 fetal sheep chronically instrumented at 109–114 days gestation (GA). In the long-term study, FABP and FHR were continuously recorded from 120 days GA to spontaneous term labor (>145 days GA) in five animals. Peak times (PT) and amplitudes (Amp) of cosinor analysis were compared at 120–126, 127–133, and 134–140 days GA. Consistent, significant linear increases in FABP and linear decreases in FHR were observed in all fetuses. Significant 24-h rhythms in FABP and FHR were observed during all the time windows. In the adrenalectomy study, to test the hypothesis that fetal cortisol plays a key role in cardiovascular maturation, fetal adrenals were removed in eight animals (ADX); sham fetal adrenalectomy was performed on five animals (Con). Cortisol (4 μg/min) was infused intravenously in four ADX fetuses from day 7postsurgery for 7 days (ADX+F). No significant changes in PT and Amp in FABP and FHR were observed. Plasma cortisol levels remained low in Con and ADX fetuses (<4.9 ng/ml). Cortisol infusion increased fetal plasma cortisol to 22.3 ± 3.2 ng/ml (mean ± SE) on day 13 in ADX+F fetuses. FABP increased in control and ADX+F but not ADX fetuses; FHR decreased in control and ADX but rose in ADX+F fetuses. These results suggest that, in chronically instrumented fetal sheep at late gestation, 1) increases in FABP and decreases in FHR are maintained consistently from 120 to 140 days GA, with distinct 24-h rhythms, the PT and Amp of which remain unchanged, and 2) the physiological increase in FABP is dependent on the fetal adrenal; bilateral removal of the fetal adrenals does not prevent the ability of cortisol to produce a sustained increase in FABP.


2002 ◽  
Vol 92 (2) ◽  
pp. 717-724 ◽  
Author(s):  
Christine A. Gleason ◽  
Roderick Robinson ◽  
Andrew P. Harris ◽  
Dennis E. Mayock ◽  
Richard J. Traystman

Preterm infants are often treated with intravenous dopamine to increase mean arterial blood pressure (MAP). However, there are few data regarding cerebrovascular responses of developing animals to dopamine infusions. We studied eight near-term and eight preterm chronically catheterized unanesthetized fetal sheep. We measured cerebral blood flow and calculated cerebral vascular resistance (CVR) at baseline and during dopamine infusion at 2.5, 7.5, 25, and 75 μg · kg−1 · min−1. In preterm fetuses, MAP increased only at 75 μg · kg−1 · min−1 (25 ± 5%), whereas in near-term fetuses MAP increased at 25 μg · kg−1 · min−1 (28 ± 4%) and further at 75 μg · kg−1 · min−1 (51 ± 3%). Dopamine infusion was associated with cerebral vasoconstriction in both groups. At 25 μg · kg−1 · min−1, CVR increased 77 ± 51% in preterm fetuses and 41 ± 11% in near-term fetuses, and at 75 μg · kg−1 · min−1, CVR increased 80 ± 33% in preterm fetuses and 83 ± 21% in near-term fetuses. We tested these responses to dopamine in 11 additional near-term fetuses under α-adrenergic blockade (phenoxybenzamine, n = 5) and under dopaminergic D1-receptor blockade (SCH-23390, n = 6). Phenoxybenzamine completely blocked dopamine's pressor and cerebral vasoconstrictive effects, while D1-receptor blockade had no effect. Therefore, in unanesthetized developing fetuses, dopamine infusion is associated with cerebral vasoconstriction, which is likely an autoregulatory, α-adrenergic response to an increase in blood pressure.


2000 ◽  
Vol 278 (5) ◽  
pp. R1171-R1181 ◽  
Author(s):  
John M. Bassett ◽  
Clifford Hanson

Increased epinephrine (Epi) and norepinephrine (NE) production plays an important role in fetal adaptation to reduced oxygen and/or nutrient availability, inhibiting insulin secretion and slowing growth to support more essential processes. To assess the importance of hypoinsulinemia for the efficacy of catecholamines, normoinsulinemia was restored by intravenous insulin infusion (0.18 mU ⋅ kg− 1 ⋅ min− 1) during prolonged infusion of either Epi (0.25–0.35 μg ⋅ kg− 1 ⋅ min− 1for 12 days, n = 7) or NE (0.5–0.7 μg ⋅ kg− 1 ⋅ min− 1for 7 days, n = 6) into normoxemic fetuses in twin-pregnant ewes, from 125–127 days of gestation. Insulin infusion for 8 days during Epi infusion or for 4 days during NE infusion decreased arterial blood pressure, O2 content, and plasma glucose, but increased heart rate significantly (all P <0.05), despite continuation of Epi or NE infusion. Cessation of insulin infusion reversed these changes. Estimated growth of fetuses infused with insulin during Epi or NE infusion (55 ± 13.9 and 83 ± 15.2 g/day) did not differ significantly from that of untreated controls (72 ± 15.4 g/day, n = 6). Growth of selected muscles and hindlimb bones was not altered either. Restoration of normoinsulinemia evidently counteracts the redistribution of metabolic activity and decreased anabolism brought about by Epi or NE in the fetus. Inhibition of insulin secretion by Epi and NE, therefore, appears essential for the efficacy of catecholamine action in the fetus.


Sign in / Sign up

Export Citation Format

Share Document