Comparative effects of leukotrienes on porcine pulmonary circulation in vitro and in vivo

1987 ◽  
Vol 63 (2) ◽  
pp. 582-588 ◽  
Author(s):  
H. Ohtaka ◽  
J. Y. Tsang ◽  
A. Foster ◽  
J. C. Hogg ◽  
R. R. Schellenberg

The present study examined the effect of leukotrienes on porcine pulmonary vasculature both in vivo and in vitro. In vitro studies using isolated vascular strips demonstrated that pulmonary arterial smooth muscle contracted to leukotriene C4 (LTC4), whereas pulmonary vein smooth muscle did not. Pulmonary arterial contraction was due to both the direct action of LTC4 and secondarily generated thromboxane A2 (TxA2). In vivo, LTC4 injection caused a pronounced but transient increase in pulmonary arterial pressure and pulmonary arterial wedge pressure (Ppw), with a smaller effect on left ventricular end-diastolic pressure. Effects of LTD4 were smaller with comparable pressure changes at all three sites, suggesting a primary cardiac effect. Like LTC4, histamine caused a disproportionate increase in Ppw vs. left ventricular end-diastolic pressure. These observations suggest that LTC4 causes pulmonary venoconstriction in vivo despite its lack of effect on pulmonary vein smooth muscle in vitro. This discrepancy may be due to venoconstrictor effects of TxA2 generated from upstream pulmonary arterial vessels.

2002 ◽  
Vol 92 (5) ◽  
pp. 2012-2018 ◽  
Author(s):  
Damian J. Horstman ◽  
Lars G. Fischer ◽  
Peter C. Kouretas ◽  
Robert L. Hannan ◽  
George F. Rich

Heparin and nitric oxide (NO) attenuate changes to the pulmonary vasculature caused by prolonged hypoxia. Heparin may increase NO; therefore, we hypothesized that heparin may attenuate hypoxia-induced pulmonary vascular remodeling via a NO-mediated mechanism. In vivo, rats were exposed to normoxia (N) or hypoxia (H; 10% O2) with or without heparin (1,200 U · kg−1 · day−1) and/or the NO synthase (NOS) inhibitor N ω-nitro-l-arginine methyl ester (l-NAME; 20 mg · kg−1 · day−1) for 3 days or 3 wk. Heparin attenuated increases in pulmonary arterial pressure, the percentage of muscular pulmonary vessels, and their medial thickness induced by 3 wk of H. Importantly, althoughl-NAME alone had no effect, it prevented these effects of heparin on vascular remodeling. In H lungs, heparin increased NOS activity and cGMP levels at 3 days and 3 wk and endothelial NOS protein expression at 3 days but not at 3 wk. In vitro, heparin (10 and 100 U · kg−1 · ml−1) increased cGMP levels after 10 min and 24 h in N and anoxic (0% O2) endothelial cell-smooth muscle cell (SMC) coculture. SMC proliferation, assessed by 5-bromo-2′-deoxyuridine incorporation during a 3-h incubation period, was decreased by heparin under N, but not anoxic, conditions. The antiproliferative effects of heparin were not altered byl-NAME. In conclusion, the in vivo results suggest that attenuation of hypoxia-induced pulmonary vascular remodeling by heparin is NO mediated. Heparin increases cGMP in vitro; however, the heparin-induced decrease in SMC proliferation in the coculture model appears to be NO independent.


2003 ◽  
Vol 95 (1) ◽  
pp. 81-88 ◽  
Author(s):  
Antonio Rodríguez-Sinovas ◽  
Josep Bis ◽  
Inocencio Anivarro ◽  
Javier de la Torre ◽  
Antoni Bayés-Genís ◽  
...  

This study tested whether ischemia-reperfusion alters coronary smooth muscle reactivity to vasoconstrictor stimuli such as those elicited by an adventitial stimulation with methacholine. In vitro studies were performed to assess the reactivity of endothelium-denuded infarct-related coronary arteries to methacholine ( n = 18). In addition, the vasoconstrictor effects of adventitial application of methacholine to left anterior descending (LAD) coronary artery was assessed in vivo in pigs submitted to 2 h of LAD occlusion followed by reperfusion ( n = 12), LAD deendothelization ( n = 11), or a sham operation ( n = 6). Endothelial-dependent vasodilator capacity of infarct-related LAD was assessed by intracoronary injection of bradykinin ( n = 13). In vitro, smooth muscle reactivity to methacholine was unaffected by ischemia-reperfusion. In vivo, baseline methacholine administration induced a transient and reversible drop in coronary blood flow (9.6 ± 4.6 to 1.9 ± 2.6 ml/min, P < 0.01), accompanied by severe left ventricular dysfunction. After ischemia-reperfusion, methacholine induced a prolonged and severe coronary blood flow drop (9.7 ± 7.0 to 3.4 ± 3.9 ml/min), with a significant delay in recovery ( P < 0.001). Endothelial denudation mimics in part the effects of methacholine after ischemia-reperfusion, and intracoronary bradykinin confirmed the existence of endothelial dysfunction. Infarct-related epicardial coronary artery shows a delayed recovery after vasoconstrictor stimuli, because of appropriate smooth muscle reactivity and impairment of endothelial-dependent vasodilator capacity.


1984 ◽  
Vol 247 (3) ◽  
pp. H371-H379 ◽  
Author(s):  
P. A. Anderson ◽  
K. L. Glick ◽  
A. Manring ◽  
C. Crenshaw

Developmental changes in contractility were sought in the fetal and postnatal sheep heart by using postextrasystolic potentiation and force, pressure, and wall-motion measures. Two different preparations were used, isolated myocardium and the chronically instrumented lamb. In the isolated muscle, the following increased significantly with age: force of contraction, the maximum rate of rise of force, and postextrasystolic potentiation. In the intact heart prior to birth [period of study, 20 +/- 4 (SD) days] heart rate (HR) fell significantly, and the following increased significantly: postextrasystolic potentiation [measured with the maximum rate of rise of left ventricular (LV) pressure (Pmax)], LV peak systolic pressure (LVP), end-diastolic dimension (EDD), end-systolic dimension (ESD), and aortic diastolic pressure. After birth, LVP, Pmax, HR, LVEDP, EDD, and ESD increased and postextrasystolic potentiation fell. The latter fall was not found in vitro and probably demonstrates a transient change in contractility, related to hormonal or neural stimulation. Over the subsequent postnatal days (6-122 days), HR fell while potentiation, EDD, and ESD increased significantly. Both in vitro and in vivo, the overall increase in postextrasystolic potentiation demonstrates a similar long-term change in contractility. The similarity of this change to that induced by mild hypertrophy suggests that development and mild hypertrophy alter myocardial contractility through a common mechanism.


2020 ◽  
Vol 319 (2) ◽  
pp. H377-H391 ◽  
Author(s):  
Si Lei ◽  
Fei Peng ◽  
Mei-Lei Li ◽  
Wen-Bing Duan ◽  
Cai-Qin Peng ◽  
...  

Smooth muscle-enriched long noncoding RNA (SMILR), as a long noncoding RNA (lncRNA), was increased in pulmonary arterial hypertension (PAH) patients and in vitro and in vivo models. SMILR activated RhoA/ROCK signaling by targeting miR-141 to disinhibit its downstream target RhoA. SMILR knockdown or miR-141 overexpression inhibited hypoxia-induced cell proliferation and migration via repressing RhoA/ROCK signaling in pulmonary arterial smooth muscle cells (PASMCs), which was confirmed in vivo experiments that knockdown of SMILR inhibited vascular remodeling and alleviated PAH in rats. SMILR may be a promising and novel therapeutic target for the treatment and drug development of PAH.


1991 ◽  
Vol 260 (3) ◽  
pp. H832-H841 ◽  
Author(s):  
J. L. Parker ◽  
R. S. Keller ◽  
D. V. DeFily ◽  
M. H. Laughlin ◽  
M. J. Novotny ◽  
...  

The purpose of this study was to determine whether intrinsic contraction-relaxation properties of coronary arteries are altered during acute gram-negative endotoxemia. Coronary vascular smooth muscle (VSM) was evaluated in vitro using large and small left circumflex coronary ring preparations isolated from dogs 4 h after administration of either saline (control; C) or 1.5 mg/kg Escherichia coli endotoxin (ET). ET dogs exhibited marked systemic hypotension and cardiovascular depression throughout the 4-h in vivo phase of the study accompanied by reduction in total left ventricular myocardial blood flow. Isolated coronary vessels were stretched to the apex of the length-contractile tension curve; no differences were observed in length-active or length-passive tension (vessel compliance) relationships between C and ET vessels. Isometric contractions produced by K+ and prostaglandin F2 alpha (PGF2 alpha) were similar in C and ET coronary arteries. VSM relaxant responses to nitroprusside (NP; 10(-10) to 10(-4) M) were also similar in C and ET vessels. In contrast to the apparent lack of effect of ET on directly acting VSM agents, relaxation responses to the endothelial-dependent vasodilator acetylcholine (ACh) were significantly less in ET vessels. Impaired vasodilator response to ACh was not improved by in vivo treatment with the combination antioxidant therapy of allopurinol, superoxide dismutase, and catalase. We conclude that both depolarization (K+) and receptor (PGF2 alpha)-mediated contractile mechanisms, as well as basal cGMP (NP)-mediated vasodilator mechanisms, remained functional in coronary vasculature during acute endotoxemia. Inhibition of ACh-mediated relaxation in ET vessels suggests altered endothelial-dependent vasodilation in coronary arteries during endotoxemia, but this change did not seem to be associated causally with oxygen free radicals.


2001 ◽  
Vol 94 (5) ◽  
pp. 833-839 ◽  
Author(s):  
Koji Ogawa ◽  
Satoru Tanaka ◽  
Paul A. Murray

Background The authors previously demonstrated in vivo that the pulmonary vasoconstrictor response to the a agonist phenylephrine is potentiated during propofol anesthesia compared with the conscious state. The current in vitro study tested the hypothesis that propofol potentiates phenylephrine-induced contraction by inhibiting the synthesis and/or activity of vasodilator metabolites of the cyclooxygenase pathway. Methods Canine pulmonary arterial rings were suspended for isometric tension recording. Intracellular calcium concentration ([Ca2+]i) was measured in pulmonary arterial strips loaded with acetoxylmethyl ester of fura-2. After phenylephrine-induced contraction, propofol (10(-7) to 10(-4) M) was administered in the presence or absence of the cyclooxygenase inhibitor ibuprofen (10(-5) M). The effects of propofol on the arachidonic acid and prostacyclin relaxation-response curves were assessed. The amount of 6-keto prostaglandin F1alpha (stable metabolite of prostacyclin) released from pulmonary vascular smooth muscle in response to phenylephrine was measured with enzyme immunoassay in the presence or absence of propofol and ibuprofen. Results Propofol potentiated phenylephrine-induced contraction in pulmonary arterial rings in a concentration-dependent and endothelium-independent manner. In endothelium-denuded strips, propofol (10(-4) M) increased tension by 53+/-11%, and increased [Ca2+]i by 56+/-9%. Ibuprofen also potentiated phenylephrine-induced contraction but abolished the propofol-induced increases in tension and [Ca2+]i. Propofol had no effect on the relaxation response to prostacyclin, whereas propofol and ibuprofen attenuated the relaxation response to arachidonic acid to a similar extent. Phenylephrine markedly increased 6-keto prostaglandin F1alpha production, and this effect was virtually abolished by propofol and ibuprofen. Conclusion These results suggest that propofol potentiates alpha-adrenoreceptor-mediated pulmonary vasoconstriction by inhibiting the concomitant production of prostacyclin by cyclooxygenase.


1990 ◽  
Vol 68 (3) ◽  
pp. 455-461
Author(s):  
M. Allam ◽  
C. Saunier ◽  
A. Sautegeau ◽  
D. Hartemann

The explanation for the increased frequency of troubles with digoxin therapy in patients with chronic pulmonary diseases is debated. The reported effects of hypoxia in vivo on myocardial levels of digoxin are contradictory, and there have been few studies on the effects of hypercapnia. In the past, it has been shown in rat myocardial tissue at rest in vitro that hypoxia decreased and hypercapnia acidosis increased the digoxin uptake. We performed a new study in vitro in an isolated beating rat heart perfused at constant flow (37 °C) and stimulated at a constant frequency (6 Hz). The performances were recorded with an intraventricular balloon equipped with a tip-manometer catheter. The action of digoxin was studied by recording systolic pressure (PS) and diastolic pressure (PD), the left ventricular developed pressure (LVDP = PS − PD), the (dP/dt)max, and the ratio (dP/dt)max/PS. First, the heart was perfused for 30 min with a modified Tyrode's solution perfusate aerated with carbogen (pH = 7.40; [Formula: see text]; [Formula: see text]) (1 mmHg = 133.32 Pa). Various parameters of contractions were recorded (initial control values). Then the heart was perfused for 15 min with Tyrode's solution aerated either with a hypoxic gas mixture (pH = 7.41; [Formula: see text]; [Formula: see text]), a hypercapnic gas mixture (pH = 7.08; [Formula: see text]; [Formula: see text]), or a hypoxic–hypercapnic gas mixture (pH = 7.09; [Formula: see text]; [Formula: see text]). Control hearts were continuously perfused with Tyrode's solution aerated with carbogen. During heart perfusion with hypercapnic, hypoxic, or hypoxic–hypercapnic Tyrode's solution, a decrease in LVDP and (dP/dt)max was observed. Finally, the heart was perfused with the same Tyrode's solution plus 1.75 × 10−5 M digoxin. The increase in myocardial contractility produced by digoxin was enhanced by hypercapnia and abolished by hypoxia. The addition of hypercapnia to hypoxia in Tyrode's solution seems to enhance the depressor action of the hypoxia.Key words: isolated heart, digoxin, hypoxia, hypercapnia, myocardial contractility.


1989 ◽  
Vol 257 (1) ◽  
pp. H339-H343 ◽  
Author(s):  
D. Ezra ◽  
R. E. Goldstein ◽  
J. F. Czaja ◽  
G. Z. Feuerstein

Endothelin is a recently discovered endothelium-derived peptide with potent coronary constrictor properties in vitro. To evaluate endothelin's cardiac actions in vivo, we measured coronary flow and regional myocardial shortening when intracoronary porcine endothelin was given to anesthetized open-chested pigs. Bolus adminstration into the left anterior descending (LAD) coronary artery of six pigs caused dose-related rapidly reversing depression of LAD flow and local shortening. Marked reductions in flow [-71 +/- 8 (SE) %] and shortening (-83 +/- 2%) after 30 pmol/kg demonstrated endothelin's potency in cardiac tissues. Systemic hemodynamic values were unaltered except for transient rises in left ventricular end-diastolic pressure. Endothelin-induced decrement in LAD flow was accompanied by electrocardiographic signs of myocardial ischemia and net release of local myocardial lactate. Intracoronary infusion of endothelin, 15 pmol.kg-1.min-1, caused progressive decline in LAD flow and local shortening followed by severe persistent hypotension and terminal ventricular fibrillation in four of five pigs. Unlike intracoronary delivery of other potent coronary constrictors, intracoronary administration of endothelin did not lead to rapid escape from the peptide's deleterious influence. Coronary exposure to endothelin under pathophysiological circumstances could result in uniquely persistent decrements in myocardial perfusion and contractile function.


1991 ◽  
Vol 260 (3) ◽  
pp. H909-H916 ◽  
Author(s):  
J. Tong ◽  
P. K. Ganguly ◽  
P. K. Singal

Changes in myocardial norepinephrine (NE) levels, turnover, uptake, and release in rats were examined at two stages of cardiac dysfunction induced by adriamycin (ADR) given intraperitoneally in six equal doses over a period of 2 wk for a cumulative dose of 15 mg/kg. At 3 wk posttreatment, ADR-treated animals showed no changes in left ventricular systolic pressure (LVSP), aortic systolic pressure (ASP), and aortic diastolic pressure (ADP) but left ventricular end-diastolic pressure (LVEDP) was significantly higher. At 6 wk posttreatment, LVSP, ASP, and ADP were significantly lower and LVEDP remained elevated. Animals in both ADR-treated groups showed signs of congestive heart failure as indicated by ascites, congestive liver, and elevated LVEDP. Structural changes typical of ADR cardiomyopathy were more pronounced in the 6-wk group. In vivo hemodynamic as well as in vitro muscle function response to different concentrations of epinephrine was depressed in its duration as well as extent in both 3- and 6-wk ADR-treated groups. Myocardial NE levels were increased in the 3-wk group but were depressed in the 6-wk group. NE turnover was faster in both 3- and 6-wk ADR groups, uptake was increased only in the 6-wk group, and release was unchanged. These data show increased cardiac sympathetic tone at both stages of ADR-induced congestive heart failure.


Sign in / Sign up

Export Citation Format

Share Document