Role of triangularis sterni during coughing and sneezing in dogs

1988 ◽  
Vol 65 (6) ◽  
pp. 2440-2445 ◽  
Author(s):  
E. van Lunteren ◽  
M. A. Haxhiu ◽  
N. S. Cherniack ◽  
J. S. Arnold

Studies in mammals have found that during breathing the triangularis sterni (TS) muscle regulates expiratory airflow and the end-expiratory position of the rib cage and furthermore that the respiratory activity of this muscle is influenced by a variety of chemical and mechanical stimuli. To assess the role of the TS during coughing and sneezing, electromyograms (EMGs) recorded from the TS were compared with EMGs of the transversus abdominis (TA) in eight pentobarbital-anesthetized dogs. During coughing induced by mechanically stimulating the trachea or larynx (n = 7 dogs), peak EMGs increased from 23 +/- 2 to 74 +/- 5 U (P less than 0.00002) for the TS and from 21 +/- 6 to 66 +/- 4 U (P less than 0.0002) for the TA. During sneezing induced by mechanically stimulating the nasal mucosa (n = 3 dogs), peak EMG of the TS increased from 10 +/- 3 to 66 +/- 7 U (P less than 0.005) and peak EMG of the TA increased from 10 +/- 2 to 73 +/- 7 U (P less than 0.02). For both muscles the shape of the EMG changed to an early peaking form during coughs and sneezes. Peak expiratory airflow during coughs of different intensity correlated more closely with peak TS EMG in three dogs and with peak TA EMG in four dogs; peak expiratory airflow during sneezes of different intensity correlated more closely with peak TS than TA EMG in all three animals. These results suggest that the TS is actively recruited during coughing and sneezing and that different neuromuscular strategies may be utilized to augment expiratory airflow.

2004 ◽  
Vol 97 (1) ◽  
pp. 85-90 ◽  
Author(s):  
Matteo Cappello ◽  
André De Troyer

The abdominal muscles expand the rib cage when they contract alone. This expansion opposes the deflation of the lung and may be viewed as pressure dissipation. The hypothesis was raised, therefore, that alterations in rib cage elastance should affect the lung deflating action of these muscles. To test this hypothesis and evaluate the quantitative importance of this effect, we measured the changes in airway opening pressure (Pao), abdominal pressure (Pab), and rib cage transverse diameter during isolated stimulation of the transversus abdominis muscle in anesthetized dogs, first with the rib cage intact and then after rib cage elastance was increased by clamping the ribs and the sternum. Stimulation produced increases in Pao, Pab, and rib cage diameter in both conditions. With the ribs and sternum clamped, however, the change in Pab was unchanged but the change in Pao was increased by 77% ( P < 0.001). In a second experiment, the transversus abdominis was stimulated before and after rib cage elastance was reduced by removing the bony ribs 3–8. Although the change in Pab after removal of the the ribs was still unchanged, the change in Pao was reduced by 62% ( P < 0.001). These observations, supported by a model analysis, indicate that rib cage elastance is a major determinant of the mechanical coupling between the abdominal muscles and the lung. In fact, in the dog, the effects of rib cage elastance and Pab on the lung-deflating action of the abdominal muscles are of the same order of magnitude.


1984 ◽  
Vol 57 (4) ◽  
pp. 1254-1260 ◽  
Author(s):  
M. Decramer ◽  
A. De Troyer

In an attempt to understand the role of the parasternal intercostals in respiration, we measured the changes in length of these muscles during a variety of static and dynamic respiratory maneuvers. Studies were performed on 39 intercostal spaces from 10 anesthetized dogs, and changes in parasternal intercostal length were assessed with pairs of piezoelectric crystals (sonomicrometry). During static maneuvers (passive inflation-deflation, isovolume maneuvers, changes in body position), the parasternal intercostals shortened whenever the rib cage inflated, and they lengthened whenever the rib cage contracted. The changes in parasternal intercostal length, however, were much smaller than the changes in diaphragmatic length, averaging 9.2% of the resting length during inflation from residual volume to total lung capacity and 1.3% during tilting from supine to upright. During quiet breathing the parasternal intercostals always shortened during inspiration and lengthened during expiration. In the intact animals the inspiratory parasternal shortening was close to that seen for the same increase in lung volume during passive inflation and averaged 3.5%. After bilateral phrenicotomy, however, the parasternal intercostal shortening during inspiration markedly increased, whereas tidal volume diminished. These results indicate that 1) the parasternal intercostals in the dog are real agonists (as opposed to fixators) and actively contribute to expand the rib cage and the lung during quiet inspiration, 2) the relationship between lung volume and parasternal length is not unique but depends on the relative contribution of the various inspiratory muscles to tidal volume, and 3) the physiological range of operating length of the parasternal intercostals is considerably smaller than that of the diaphragm.(ABSTRACT TRUNCATED AT 250 WORDS)


1993 ◽  
Vol 74 (1) ◽  
pp. 238-244 ◽  
Author(s):  
G. A. Farkas ◽  
M. A. Schroeder

Recent electromyographic studies in awake and anesthetized dogs have demonstrated that spontaneous breathing in prone dogs is associated with an increased activation of the expiratory muscles compared with that recorded in supine dogs. On the basis of these observations, one would infer that the mechanical role and contribution of the expiratory musculature to the act of breathing are enhanced in the prone posture. The changes in length associated with these postural increases in expiratory muscle electrical activity, however, have not been investigated and formed the basis of our investigation. We examined the active and passive changes in length of expiratory muscles during spontaneous breathing in supine and prone anesthetized dogs and assessed the relative role of the expiratory musculature in the generation of tidal volume. The experiments were performed on eight mongrel dogs anesthetized with pentobarbital sodium. In all eight animals, spontaneous breathing in the prone posture was associated with an increased activation (electromyogram) of the triangularis sterni, external oblique, and transversus abdominis muscles compared with that recorded in the supine posture. We quantitated the role of the expiratory muscles in both postures by measuring the volume difference between relaxation volume of the respiratory system and the end-expiratory lung volume. In the supine animal, 93 ml were attributed to the expiratory musculature, whereas in the prone animal, we noted that 186 ml (P < 0.01) were displaced during expiration, representing 43 and 52% (NS) of tidal volume, respectively. During spontaneous breathing in the supine or prone posture, all three expiratory muscles underwent significant length changes.(ABSTRACT TRUNCATED AT 250 WORDS)


1991 ◽  
Vol 70 (5) ◽  
pp. 2025-2031 ◽  
Author(s):  
M. A. Schroeder ◽  
H. Y. Tao ◽  
G. A. Farkas

To assess the mechanical role of the expiratory musculature during eupnea, we recorded the electromyographic (EMG) activity of the triangularis sterni, the external oblique, and the transversus abdominis in eight supine lightly anesthetized dogs and have measured the volume generated by the phasic activation of the expiratory muscles. Activation of the expiratory muscles was invariably associated with a decrease in lung volume below the relaxed position of the respiratory system, a volume equal to 41.3 +/- 8.4 ml. This volume represented roughly 20% of tidal volume generated during spontaneous breathing. The fractional expiratory contribution to the tidal volume was unrelated to the size of the animal. Traction on the forelimbs (limb extension), however, tended to enhance the phasic expiratory activation of both the triangularis sterni and the transversus abdominis in the majority of animals. Moreover, after limb extension, the fractional contribution of tidal volume attributed to the phasic activation of the expiratory muscles increased in all but one animal. During spontaneous breathing with the forelimbs extended, roughly 25% of tidal volume was found to be due directly to phasic expiratory muscle contraction. The present observations firmly establish that in supine lightly anesthetized dogs breathing at rest the expiratory component of tidal volume represents a substantial contribution.


1990 ◽  
Vol 69 (6) ◽  
pp. 2227-2232 ◽  
Author(s):  
F. J. Bosso ◽  
S. A. Lang ◽  
M. B. Maron

The interosseous external intercostal (EI) muscles of the upper rib cage are electrically active during inspiration, but the mechanical consequence of their activation is unclear. In 16 anesthetized dogs, we simultaneously measured EI (3rd and 4th interspaces) and parasternal intercostal (PA) (3rd interspace) electromyogram and length. Muscle length was measured by sonomicrometry and expressed as a percentage of resting length (%LR). During resting breathing, each muscle was electrically active and shortened to a similar extent. Sequential EI muscle denervation (3rd and 4th interspaces) followed by PA denervation (3rd interspace) demonstrated significant reductions in the degree of inspiratory shortening for each muscle. Mean EI muscle shortening of the third and fourth interspaces decreased from -3.4 +/- 0.5 and -3.0 +/- 0.4% LR (SE) under control conditions to -0.2 +/- 0.2 and -0.8 +/- 0.3% LR, respectively, after selective denervation of each of these muscles (P less than 0.001 for each). After selective denervation of the PA muscle, its shortening decreased from -3.5 +/- 0.3 to +0.6% LR (SE) (P less than 0.001). PA muscle denervation also caused the EI muscle in the third interspace to change from inspiratory shortening of -0.2% to inspiratory lengthening of +0.2% +/- 0.2 (P less than 0.05). We conclude that during eupneic breathing 1) the EI muscles of the upper rib cage, like the PA muscles, are inspiratory agonists and actively contribute to rib cage expansion and 2) PA muscle contraction contributes to EI muscle shortening.


1990 ◽  
Vol 69 (6) ◽  
pp. 2137-2142 ◽  
Author(s):  
G. A. Farkas ◽  
M. A. Schroeder

The purpose of the present study was to assess the mechanical role of the expiratory muscles during spontaneous breathing in prone animals. The electromyographic (EMG) activity of the triangularis sterni, the rectus abdominis, the external oblique, and the transversus abdominis was studied in 10 dogs light anesthetized with pentobarbital sodium. EMGs were recorded during spontaneous steady-state breathing in supine and prone suspended animals both before and after cervical vagotomy. We also measured the end-expiratory lung volume [functional residual capacity (FRC)] in supine and prone positions to assess the mechanical role of expiratory muscle activation in prone dogs. Spontaneous breathing in the prone posture elicited a significant recruitment of the triangularis sterni, the external oblique, and the transversus abdominis (P less than 0.05). Bilateral cervical vagotomy eliminated the postural activation of the external oblique and the transversus abdominis but not the triangularis sterni. Changes in posture during control and after cervical vagotomy were associated with an increase in FRC. However, changes in FRC, on average, were 132.3 +/- 33.8 (SE) ml larger (P less than 0.01) postvagotomy. We conclude that spontaneous breathing in prone anesthetized dogs is associated with a marked phasic expiratory recruitment of rib cage and abdominal muscles. The present data also indicate that by relaxing at end expiration the expiratory muscles of the abdominal region are directly responsible for generating roughly 40% of the tidal volume.


1984 ◽  
Vol 56 (6) ◽  
pp. 1583-1588 ◽  
Author(s):  
A. Oliven ◽  
E. C. Deal ◽  
S. G. Kelsen ◽  
N. S. Cherniack

The ability to maintain alveolar ventilation is compromised by respiratory muscle weakness. To examine the independent role of reflexly mediated neural mechanisms to decreases in the strength of contraction of respiratory muscles, we studied the effects of partial paralysis on the level and pattern of phrenic motor activity in 22 anesthetized spontaneously breathing dogs. Graded weakness induced with succinylcholine decreased tidal volume and prolonged both inspiratory and expiratory time causing hypoventilation and hypercapnia. Phrenic peak activity as well as the rate of rise of the integrated phrenic neurogram increased. However, when studied under isocapnic conditions, increases in the severity of paralysis, as assessed from the ratio of peak diaphragm electromyogram to peak phrenic activity, produced progressive increases in inspiratory time and phrenic peak activity but did not affect its rate of rise. After vagotomy, partial paralysis induced in 11 dogs with succinylcholine also prolonged the inspiratory burst of phrenic activity, indicating that vagal reflexes were not solely responsible for the alterations in respiratory timing. Muscle paresis was also induced with gallamine or dantrolene, causing similar responses of phrenic activity and respiratory timing. Thus, at constant levels of arterial CO2 in anesthetized dogs, respiratory muscle partial paralysis results in a decrease in breathing rate without changing the rate of rise of respiratory motor activity. This is not dependent solely on vagally mediated reflexes and occurs regardless of the pharmacological agent used. These observations in the anesthetized state are qualitatively different from the response to respiratory muscle paralysis or weakness observed in awake subjects.(ABSTRACT TRUNCATED AT 250 WORDS)


1991 ◽  
Vol 261 (2) ◽  
pp. R323-R328 ◽  
Author(s):  
M. A. Perrella ◽  
F. L. Hildebrand ◽  
K. B. Margulies ◽  
J. C. Burnett

The endothelium has emerged as an important modulator of vascular tone by producing both vasodilating and vasoconstricting substances. In vitro studies have demonstrated that endothelial cells produce endothelium-derived relaxing factor (EDRF), which promotes vasodilation via the stimulation of intracellular guanosine 3',5'-cyclic monophosphate (cGMP). However, the role of EDRF in the basal regulation of cardiopulmonary and renal function is not well defined. The present study was therefore designed to assess the function of EDRF by studying two groups of normal anesthetized dogs, of which one received a competitive inhibitor to EDRF generation, NG-monomethyl-L-arginine (L-NMMA; 50 micrograms.kg-1.min-1 iv), and the other received a vehicle. The L-NMMA infusion produced no significant increase in mean arterial pressure but marked increases in systemic, pulmonary, and renal vascular resistances compared with the vehicle group. Although renal blood flow decreased with L-NMMA, no changes were observed in glomerular filtration rate or sodium excretion. Associated with the cardiopulmonary and renal responses with L-NMMA was a modest increase in plasma endothelin (7.9 +/- 1.3 to 10.2 +/- 1.8 pg/ml, P less than 0.05), an endothelium-derived vasoconstrictor. No alteration was observed in plasma or urinary cGMP with EDRF inhibition. These cardiopulmonary and renal responses with L-NMMA may be attributed not only to EDRF inhibition but to an imbalance between endothelium-derived relaxing and contracting factors.


1991 ◽  
Vol 70 (4) ◽  
pp. 1554-1562 ◽  
Author(s):  
J. D. Road ◽  
A. M. Leevers ◽  
E. Goldman ◽  
A. Grassino

Active expiration is produced by the abdominal muscles and the rib cage expiratory muscles. We hypothesized that the relative contribution of these two groups to expiration would affect diaphragmatic length and, hence, influence the subsequent inspiration. To address this question we measured the respiratory muscle response to expiratory threshold loading in spontaneously breathing anesthetized dogs. Prevagotomy, the increase in lung volume (functional residual capacity) and decrease in initial resting length of the diaphragm were attenuated by greater than 50% of values predicted by the passive relationships. Diaphragmatic activation (electromyogram) increased and tidal volume (VT) was preserved. Postvagotomy, effective expiratory muscle recruitment was abolished. The triangularis sterni muscle remained active, and the increase in lung volume was attenuated by less than 15% of that predicted by the passive relationship. Diaphragmatic length was shorter than predicted. VT was not restored, even though costal diaphragmatic and parasternal intercostal electromyogram increased. During expiratory threshold loading with abdominal muscles resected and vagus intact, recruitment of the rib cage expiratory muscles produced a reduction in lung volume comparable with prevagotomy; however, diaphragmatic length decreased markedly. Both the rib cage and abdominal expiratory muscles may defend lung volume; however, their combined action is important to restore diaphragmatic initial length and, accordingly, to preserve VT.


Sign in / Sign up

Export Citation Format

Share Document