Comparison of the hemodynamic effects of nitric oxide and endothelium-dependent vasodilators in intact lungs

1990 ◽  
Vol 68 (2) ◽  
pp. 735-747 ◽  
Author(s):  
S. L. Archer ◽  
K. Rist ◽  
D. P. Nelson ◽  
E. G. DeMaster ◽  
N. Cowan ◽  
...  

The effects of endothelium-dependent vasodilation on pulmonary vascular hemodynamics were evaluated in a variety of in vivo and in vitro models to determine 1) the comparability of the hemodynamic effects of acetylcholine (ACh), bradykinin (BK), nitric oxide (NO), and 8-bromo-guanosine 3′,5′-cyclic monophosphate (cGMP), 2) whether methylene blue is a useful inhibitor of endothelium-dependent relaxing factor (EDRF) activity in vivo, and 3) the effect of monocrotaline-induced pulmonary hypertension on the responsiveness of the pulmonary vasculature to ACh. In isolated rat lungs, which were preconstricted with hypoxia, ACh, BK, NO, and 8-bromo-cGMP caused pulmonary vasodilation, which was not inhibited by maximum tolerable doses of methylene blue. Methylene blue did not inhibit EDRF activity in any model, despite causing increased pulmonary vascular tone and responsiveness to various constrictor agents. There were significant differences in the hemodynamic characteristics of ACh, BK, and NO. In the isolated lung, BK and NO caused transient decreases of hypoxic vasoconstriction, whereas ACh caused more prolonged vasodilation. Pretreatment of these lungs with NO did not significantly inhibit ACh-induced vasodilation but caused BK to produce vasoconstriction. Tachyphylaxis, which was agonist specific, developed with repeated administration of ACh or BK but not NO. Tachyphylaxis probably resulted from inhibition of the endothelium-dependent vasodilation pathway proximal to NO synthesis, because it could be overcome by exogenous NO. Pretreatment with 8-bromo-cGMP decreased hypoxic pulmonary vasoconstriction and, even when the hypoxic pressor response had largely recovered, subsequent doses of ACh and NO failed to cause vasodilation, although BK produced vasoconstriction. These findings are compatible with the existence of feedback inhibition of the endothelium-dependent relaxation by elevation of cGMP levels. Responsiveness to ACh was retained in lungs with severe monocrotaline-induced pulmonary hypertension. Many of these findings would not have been predicted based on in vitro studies and illustrate the importance for expanding studies of EDRF to in vivo and ex vivo models.

2002 ◽  
Vol 92 (5) ◽  
pp. 2012-2018 ◽  
Author(s):  
Damian J. Horstman ◽  
Lars G. Fischer ◽  
Peter C. Kouretas ◽  
Robert L. Hannan ◽  
George F. Rich

Heparin and nitric oxide (NO) attenuate changes to the pulmonary vasculature caused by prolonged hypoxia. Heparin may increase NO; therefore, we hypothesized that heparin may attenuate hypoxia-induced pulmonary vascular remodeling via a NO-mediated mechanism. In vivo, rats were exposed to normoxia (N) or hypoxia (H; 10% O2) with or without heparin (1,200 U · kg−1 · day−1) and/or the NO synthase (NOS) inhibitor N ω-nitro-l-arginine methyl ester (l-NAME; 20 mg · kg−1 · day−1) for 3 days or 3 wk. Heparin attenuated increases in pulmonary arterial pressure, the percentage of muscular pulmonary vessels, and their medial thickness induced by 3 wk of H. Importantly, althoughl-NAME alone had no effect, it prevented these effects of heparin on vascular remodeling. In H lungs, heparin increased NOS activity and cGMP levels at 3 days and 3 wk and endothelial NOS protein expression at 3 days but not at 3 wk. In vitro, heparin (10 and 100 U · kg−1 · ml−1) increased cGMP levels after 10 min and 24 h in N and anoxic (0% O2) endothelial cell-smooth muscle cell (SMC) coculture. SMC proliferation, assessed by 5-bromo-2′-deoxyuridine incorporation during a 3-h incubation period, was decreased by heparin under N, but not anoxic, conditions. The antiproliferative effects of heparin were not altered byl-NAME. In conclusion, the in vivo results suggest that attenuation of hypoxia-induced pulmonary vascular remodeling by heparin is NO mediated. Heparin increases cGMP in vitro; however, the heparin-induced decrease in SMC proliferation in the coculture model appears to be NO independent.


1999 ◽  
Vol 277 (5) ◽  
pp. H1849-H1856 ◽  
Author(s):  
Stephen M. Black ◽  
R. Scott Heidersbach ◽  
D. Michael McMullan ◽  
Janine M. Bekker ◽  
Michael J. Johengen ◽  
...  

Life-threatening increases in pulmonary vascular resistance have been noted on acute withdrawal of inhaled nitric oxide (NO), although the mechanisms remain unknown. In vitro data suggest that exogenous NO exposure inhibits endothelial NO synthase (NOS) activity. Thus the objectives of this study were to determine the effects of inhaled NO therapy and its acute withdrawal on endogenous NOS activity and gene expression in vivo in the intact lamb. Six 1-mo-old lambs were mechanically ventilated and instrumented to measure vascular pressures and left pulmonary blood flow. Inhaled NO (40 ppm) acutely decreased left pulmonary vascular resistance by 27.5 ± 4.7% ( P < 0.05). This was associated with a 207% increase in plasma cGMP concentrations ( P < 0.05). After 6 h of inhaled NO, NOS activity was reduced to 44.3 ± 5.9% of pre-NO values ( P < 0.05). After acute withdrawal of NO, pulmonary vascular resistance increased by 52.1 ± 11.6% ( P < 0.05) and cGMP concentrations decreased. Both returned to pre-NO values within 60 min. One hour after NO withdrawal, NOS activity increased by 48.4 ± 19.1% to 70% of pre-NO values ( P < 0.05). Western blot analysis revealed that endothelial NOS protein levels remained unchanged throughout the study period. These data suggest a role for decreased endogenous NOS activity in the rebound pulmonary hypertension noted after acute withdrawal of inhaled NO.


2019 ◽  
Vol 20 (4) ◽  
pp. 912 ◽  
Author(s):  
Fabio Perrotta ◽  
Ersilia Nigro ◽  
Mariano Mollica ◽  
Adriano Costigliola ◽  
Vito D’Agnano ◽  
...  

Pulmonary hypertension is an umbrella term including many different disorders causing an increase of the mean pulmonary arterial pressure (mPAP) ≥ 25 mmHg. Recent data revealed a strong association between obesity and pulmonary hypertension. Adiponectin is a protein synthetized by the adipose tissue with pleiotropic effects on inflammation and cell proliferation, with a potential protective role on the pulmonary vasculature. Both in vivo and in vitro studies documented that adiponectin is an endogenous modulator of NO production and interferes with AMP-activated protein kinase (AMPK) activation, mammalian target of rapamycin (mTOR), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κβ) signaling preventing endothelial dysfunction and proliferation. Furthermore, adiponectin ameliorates insulin resistance by mediating the biological effects of peroxisome proliferator-activated receptor-gamma (PPARγ). Therefore, adiponectin modulation emerged as a theoretical target for the treatment of pulmonary hypertension, currently under investigation. Recently, consistent data showed that hypoglycemic agents targeting PPARγ as well as renin–angiotensin system inhibitors and mineralocorticoid receptor blockers may influence pulmonary hemodynamics in different models of pulmonary hypertension.


1996 ◽  
Vol 271 (1) ◽  
pp. E113-E122 ◽  
Author(s):  
N. D. Vaziri ◽  
X. J. Zhou ◽  
F. Naqvi ◽  
J. Smith ◽  
F. Oveisi ◽  
...  

We studied the mechanism of erythropoietin (EPO)-induced hypertension (HTN) in rats with chronic renal failure (CRF). After partial nephrectomy, rats were randomized into four groups. Group A received EPO, 150 U/kg, two times weekly for 6 wk to prevent anemia; group B received placebo injections and became anemic; group C received EPO but was kept anemic by dietary iron deficiency; and group D received placebo and regular transfusions to match hematocrit (Hct) in group A. Blood pressure (BP), Hct, platelet cytosolic calcium ([Ca2+]i) and magnesium concentration, and pressor and vasodilatory responses were determined. By design, Hct in groups A and D were comparable and significantly greater (P < 0.01) than in groups B and C. Despite divergent Hct values, the EPO-treated groups A and C showed a significant rise in BP compared with the placebo-treated groups B and D. HTN occurred whether EPO therapy was begun immediately or 4 wk after nephrectomy. EPO therapy augmented the elevation of basal [Ca2+]i and restored the defective thrombin-mediated rise of platelet [Ca2+]i in CRF animals. EPO therapy did not alter caudal artery contraction in response to either 68 mM K(+)-induced depolarization, angiotensin II or alpha 1-agonist, methoxamine in vitro, or the pressor response to angiotensin II in vivo. However, EPO therapy impaired the hypotensive response to nitric oxide (NO) donors, sodium nitroprusside and S-nitroso-N-acetyl-D,L-penicillamine, and reversed the CRF-induced upregulation of guanosine 3',5'-cyclic monophosphate production by thoracic aorta in vitro. Thus EPO-induced HTN in CRF rats is Hct independent and is associated with and perhaps causally related to increased basal and stimulated [Ca2+]i and impaired vasodilatory response to NO.


1995 ◽  
Vol 79 (4) ◽  
pp. 1088-1092 ◽  
Author(s):  
M. M. Kurrek ◽  
L. Castillo ◽  
K. D. Bloch ◽  
S. R. Tannenbaum ◽  
W. M. Zapol

Nitric oxide (NO) has been demonstrated to decrease its own synthesis in tissue preparations. We tested the hypothesis that endogenous NO synthesis induced by lipopolysaccharides (LPS) would be decreased by exogenous NO during isolated lung perfusion. Rats were pretreated with either saline or LPS 48 h before lung harvest. Endogenous NO synthase activity was measured as conversion of L-[14C]-arginine to L-[14C]citrulline during 90 min of perfusion. NO (100 ppm) was added to the ventilating gas during perfusion of lungs from one group of control or LPS-treated rats. A second group of control or LPS-treated rats was exposed chronically to 100 ppm NO for the 48 h before lung harvest, in addition to receiving 100 ppm NO added to the ventilating gas during lung perfusion. We conclude that conversion of L-[14C]arginine to L-[14C]citrulline was minimal in control lungs and increased in response to LPS pretreatment. NO added to the ventilating gas for the 90 min of ex vivo perfusion did not alter the rate of L-[14C]citrulline production. In vivo exposure to 100 ppm NO for 48 h did not alter the induction of inducible NO synthase activity as measured during ex vivo lung perfusion. This indicates that inhaled NO does not exert negative-feedback inhibition on inducible NO synthase in the ex vivo rat lung.


2014 ◽  
Vol 306 (11) ◽  
pp. L996-L1005 ◽  
Author(s):  
Sachiko Kuriyama ◽  
Yoshiteru Morio ◽  
Michie Toba ◽  
Tetsutaro Nagaoka ◽  
Fumiyuki Takahashi ◽  
...  

Upregulation of the erythropoietin (EPO)/EPO receptor (EPOR) system plays a protective role against chronic hypoxia-induced pulmonary hypertension (hypoxic PH) through enhancement of endothelial nitric oxide (NO)-mediated signaling. Genistein (Gen), a phytoestrogen, is considered to ameliorate NO-mediated signaling. We hypothesized that Gen attenuates and prevents hypoxic PH. In vivo, Sprague-Dawley rats raised in a hypobaric chamber were treated with Gen (60 mkg/kg) for 21 days. Pulmonary hemodynamics and vascular remodeling were ameliorated in Gen-treated hypoxic PH rats. Gen also restored cGMP levels and phosphorylated endothelial NO synthase (p-eNOS) at Ser1177 and p-Akt at Ser473 expression in the lungs. Additionally, Gen potentiated plasma EPO concentration and EPOR-positive endothelial cell counts. In experiments with hypoxic PH rats' isolated perfused lungs, Gen caused NO- and phosphatidylinositol 3-kinase (PI3K)/Akt-dependent vasodilation that reversed abnormal vasoconstriction. In vitro, a combination of EPO and Gen increased the p-eNOS and the EPOR expression in human umbilical vein endothelial cells under a hypoxic environment. Moreover, Gen potentiated the hypoxic increase in EPO production from human hepatoma cells. We conclude that Gen may be effective for the prevention of hypoxic PH through the improvement of PI3K/Akt-dependent, NO-mediated signaling in association with enhancement of the EPO/EPOR system.


2012 ◽  
Vol 303 (6) ◽  
pp. F812-F820 ◽  
Author(s):  
Monika Thumova ◽  
Vladimir Pech ◽  
Otto Froehlich ◽  
Diana Agazatian ◽  
Xiaonan Wang ◽  
...  

Pendrin is a Cl−/HCO3− exchanger, expressed in the apical regions of some intercalated cell subtypes, and is critical in the pressor response to angiotensin II. Since angiotensin type 1 receptor inhibitors reduce renal pendrin protein abundance in mice in vivo through a mechanism that is dependent on nitric oxide (NO), we asked if NO modulates renal pendrin expression in vitro and explored the mechanism by which it occurs. Thus we quantified pendrin protein abundance by confocal fluorescent microscopy in cultured mouse cortical collecting ducts (CCDs) and connecting tubules (CNTs). After overnight culture, CCDs maintain their tubular structure and maintain a solute gradient when perfused in vitro. Pendrin protein abundance increased 67% in CNT and 53% in CCD when NO synthase was inhibited ( NG-nitro-l-arginine methyl ester, 100 μM), while NO donor (DETA NONOate, 200 μM) application reduced pendrin protein by ∼33% in the CCD and CNT. When CNTs were cultured in the presence of the guanylyl cyclase inhibitor 1H-[1,2,4] oxadiazolo[4,3-a]quinoxalin-1-one (10 μM), NO donors did not alter pendrin abundance. Conversely, pendrin protein abundance rose when cAMP content was increased by the application of an adenylyl cyclase agonist (forskolin, 10 μM), a cAMP analog (8-bromo-cAMP, 1 mM), or a phosphodiesterase inhibitor (BAY60-7550, 50 μM). Since NO reduces cellular cAMP in the CNT, we asked if NO reduces pendrin abundance by reducing cAMP. With blockade of cGMP-stimulated phosphodiesterase II, NO did not alter pendrin protein abundance. We conclude that NO acts through cAMP to reduce pendrin total protein abundance by enhancing cAMP degradation.


2018 ◽  
Author(s):  
Vu Thao-Vi Dao ◽  
Mahmoud H. Elbatreek ◽  
Martin Deile ◽  
Pavel I. Nedvetsky ◽  
Andreas Güldner ◽  
...  

AbstractNitric oxide (NO)-cyclic GMP (cGMP) signaling is a vasoprotective pathway therapeutically targeted for example in pulmonary hypertension. Its dysregulation in disease is incompletely understood. Here we show in pulmonary artery endothelial cells that feedback inhibition by NO of the NO receptor, the cGMP forming soluble guanylate cyclase (sGC), may contribute to this. Both endogenous NO from endothelial NO synthase or exogenous NO from NO donor compounds decreased sGC protein and activity. This was not mediated by cGMP as the NO-independent sGC stimulator or direct activation of cGMP-dependent protein kinase did not mimic it. Thiol-sensitive mechanisms were also not involved as the thiol-reducing agent, N-acetyl-L-cysteine did not prevent this feedback. Instead, both in-vitro and in-vivo and in health and acute respiratory lung disease, chronically elevated NO led to the inactivation and degradation of sGC whilst leaving the heme-free isoform, apo-sGC, intact or even increasing its levels. Thus, NO regulates sGC in a bimodal manner, acutely stimulating and chronically inhibiting, as part of self-limiting direct feedback that is cGMP-independent. In high NO disease conditions, this is aggravated but can be functionally recovered in a mechanism-based manner by apo-sGC activators that re-establish cGMP formation.


2006 ◽  
Vol 290 (2) ◽  
pp. L359-L366 ◽  
Author(s):  
Peter Oishi ◽  
Albert Grobe ◽  
Eileen Benavidez ◽  
Boaz Ovadia ◽  
Cynthia Harmon ◽  
...  

Previous in vivo studies indicate that inhaled nitric oxide (NO) decreases nitric oxide synthase (NOS) activity and that this decrease is associated with significant increases in pulmonary vascular resistance (PVR) upon the acute withdrawal of inhaled NO (rebound pulmonary hypertension). In vitro studies suggest that superoxide and peroxynitrite production during inhaled NO therapy may mediate these effects, but in vivo data are lacking. The objective of this study was to determine the role of superoxide in the decrease in NOS activity and rebound pulmonary hypertension associated with inhaled NO therapy in vivo. In control lambs, 24 h of inhaled NO (40 ppm) decreased NOS activity by 40% ( P < 0.05) and increased endothelin-1 levels by 64% ( P < 0.05). Withdrawal of NO resulted in an acute increase in PVR (60.7%, P < 0.05). Associated with these changes, superoxide and peroxynitrite levels increased more than twofold ( P < 0.05) following 24 h of inhaled NO therapy. However, in lambs treated with polyethylene glycol-conjugated superoxide dismutase (PEG-SOD) during inhaled NO therapy, there was no change in NOS activity, no increase in superoxide or peroxynitrite levels, and no increase in PVR upon the withdrawal of inhaled NO. In addition, endothelial NOS nitration was 18-fold higher ( P < 0.05) in control lambs than in PEG-SOD-treated lambs following 24 h of inhaled NO. These data suggest that superoxide and peroxynitrite participate in the decrease in NOS activity and rebound pulmonary hypertension associated with inhaled NO therapy. Reactive oxygen species scavenging may be a useful therapeutic strategy to ameliorate alterations in endogenous NO signaling during inhaled NO therapy.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Chamberlin Fodem ◽  
Elvine Pami Nguelefack-Mbuyo ◽  
Magloire Kanyou Ndjenda II ◽  
Albert Kamanyi ◽  
Télesphore Benoit Nguelefack

Stephania abyssinica is a medicinal plant used in Cameroon alternative medicine to treat arterial hypertension (AHT). Previous in vitro studies demonstrated the endothelium nitric oxide-independent vasorelaxant property of the aqueous extract from Stephania abyssinica (AESA). But its effect on AHT is unknown. The present study was undertaken to explore other vasorelaxant mechanisms and to determine the antihypertensive effects of AESA in male Wistar rats. Phytochemical analysis of AESA was carried out using the liquid chromatography-mass spectrometry (LC-MS) method. The vasorelaxant effects of AESA (1-1000 μg/mL) were studied on rat isolated thoracic aorta rings, in the absence or presence of indomethacin (10 μM) or methylene blue (10 μM). The inhibitory effect of AESA on phenylephrine (PE, 10 μM) or KCl- (60 mM) induced contraction as well as the intracellular calcium release was also evaluated. The in vivo antihypertensive activity of AESA (43, 86, or 172 mg/kg/day) or captopril (20 mg/kg/day) administered orally was assessed in L-NAME- (40 mg/kg/day) treated rats. Blood pressure and heart rate (HR) were measured at the end of each week while serum or urinary nitric oxide (NO), creatinine, and glomerular filtration rate (GFR) were determined at the end of the 6 weeks of treatment, as well as histological analysis of the heart and the kidney. The LC-MS profiling of AESA identified 9 compounds including 7 alkaloids. AESA produced a concentration-dependent relaxation on contraction induced either by PE and KCl, which was significantly reduced in endothelium-denuded vessels, as well as in vessels pretreated with indomethacin and methylene blue. Moreover, AESA inhibited the intracellular Ca2+ release-induced contraction. In vivo, AESA reduced the AHT, heart rate (HR), and ventricular hypertrophy and increased serum NO, urine creatinine, and GFR. AESA also ameliorated heart and kidney lesions as compared to the L-NAME group. These findings supported the use of AESA as a potential antihypertensive drug.


Sign in / Sign up

Export Citation Format

Share Document