Diaphragm capillarity and oxidative capacity during postnatal development

1991 ◽  
Vol 70 (1) ◽  
pp. 103-111 ◽  
Author(s):  
G. C. Sieck ◽  
T. S. Cheung ◽  
C. E. Blanco

In the cat diaphragm, fiber capillarity, cross-sectional area, and succinate dehydrogenase (SDH) activity were measured across the first 6 wk of postnatal development. Fibers were classified as type I, IIa, IIb, or IIc on the basis of staining for myofibrillar adenosinetriphosphatase (ATPase). Capillaries were identified in sections stained for ATPase at pH 4.2. Fiber cross-sectional areas and SDH activities were quantified using an image-processing system. During postnatal development, the proportions of type I fibers increased while type II fibers decreased. At birth, all type II fibers were IIc. From the 1st to the 2nd postnatal wk, the proportion of type IIc fibers decreased while the numbers of IIa and IIb increased. Thereafter the proportion of type IIb fibers continued to increase while the number of IIa steadily declined. At birth, capillarity, cross-sectional areas, and SDH activities of type I and II fibers were low compared with other postnatal age groups. Fiber cross-sectional areas increased progressively with age. The number of capillaries surrounding type I and II fibers increased markedly by the 2nd wk and then continued to increase at a slower rate. The number of capillaries per fiber area reached a peak by the 2nd wk and then declined as fiber cross-sectional area increased. Postnatal changes in capillarity depended on fiber type, being greatest in IIb. SDH activities of type I and II fibers were initially low during the first 2 postnatal wk and then peaked by the 3rd wk. After the 6th wk, fiber SDH activities decreased to adult values. Among the type II fibers, IIb showed the greatest change in SDH activity during early postnatal development.

2004 ◽  
Vol 5 (3) ◽  
pp. 195-202 ◽  
Author(s):  
Alissa Guildner Gehrke ◽  
Margaret Sheie Krull ◽  
Robin Shotwell McDonald ◽  
Tracy Sparby ◽  
Jessica Thoele ◽  
...  

Age-related changes in skeletal muscle, in combination with bed rest, may result in a poorer rehabilitation potential for an elderly patient. The purpose of this study was to determine the effects of non-weight bearing (hind limb unweighting [HU]) on the soleus and extensor digitorum longus (EDL) in older rats. Two non-weight bearing conditions were used: an uninterrupted bout of HU and an interrupted bout of HU. Twenty-one rats were randomly placed into 1 of 3 groups: control, interrupted HU (2 phases of 7 days of HU, separated by a 4-day weight-bearing phase) and an uninterrupted HU (18 uninterrupted days of HU). Following non-weight bearing, the soleus and EDL muscles were removed. Fiber type identification was performed by myofibrillar ATPase and cross-sectional area was determined. The findings suggest that any period of non-weight bearing leads to a decrease in muscle wet weight (19%-45%). Both type I and type II fibers of the soleus showed atrophy (decrease in cross-sectional area, 35%-44%) with an uninterrupted bout of non-weight bearing. Only the type II fibers of the soleus showed recovery with an interrupted bout of weight bearing. In the EDL, type II fibers were more affected by an uninterrupted bout of non-weight bearing (15% decrease in fiber size) compared to the type I fibers. EDL type II fibers showed more atrophy with interrupted bouts of non-weight bearing than with a single bout (a 40% compared to a 15% decrease). This study shows that initial weight bearing after an episode of non-weight bearing may be damaging to type II fibers of the EDL.


1993 ◽  
Vol 74 (2) ◽  
pp. 742-749 ◽  
Author(s):  
D. J. Prezant ◽  
D. E. Valentine ◽  
H. H. Kim ◽  
E. I. Gentry

The effects of 4.5 days of acute starvation, either alone or followed by refeeding (ad libitum), on diaphragm contractility, fatigue, and fiber types were studied in male rats. Contractility and fatigue resistance indexes were measured in an in vitro costal diaphragm strip preparation with direct stimulation at 37 degrees C. Compared with controls, starvation produced a 28 +/- 1% (P < 0.001) reduction in body weight and an 18 +/- 4% (P < 0.001) reduction in costal diaphragm weight. Twitch and tetanic tensions (normalized for weight or cross-sectional area) were not reduced by starvation. Starvation produced significant increases in fatigue resistance indexes after a 5-Hz stimulation paradigm but not after a 100-Hz paradigm, supporting the hypothesis that fatigue resistance is dependent on the energy demand of a given paradigm. The proportions of type I and type II fibers were similar between diaphragms of starved and control rats, but the cross-sectional area of type II fibers decreased significantly by 18 +/- 7% (P < 0.01). Thus, despite the significant decrease in diaphragm weight after starvation, contractility was preserved and fatigue resistance was increased (low-output paradigm). This is consistent with the decrease in type II fiber area. Refeeding restored all parameters so that there were no longer significant differences in body or diaphragm weight, contractility, fatigue, or fiber types.


2010 ◽  
Vol 109 (3) ◽  
pp. 635-642 ◽  
Author(s):  
Samuel M. Cadena ◽  
Kathleen N. Tomkinson ◽  
Travis E. Monnell ◽  
Matthew S. Spaits ◽  
Ravindra Kumar ◽  
...  

This is the first report that inhibition of negative regulators of skeletal muscle by a soluble form of activin type IIB receptor (ACE-031) increases muscle mass independent of fiber-type expression. This finding is distinct from the effects of selective pharmacological inhibition of myostatin (GDF-8), which predominantly targets type II fibers. In our study 8-wk-old C57BL/6 mice were treated with ACE-031 or vehicle control for 28 days. By the end of treatment, mean body weight of the ACE-031 group was 16% greater than that of the control group, and wet weights of soleus, plantaris, gastrocnemius, and extensor digitorum longus muscles increased by 33, 44, 46 and 26%, respectively ( P < 0.05). Soleus fiber-type distribution was unchanged with ACE-031 administration, and mean fiber cross-sectional area increased by 22 and 28% ( P < 0.05) in type I and II fibers, respectively. In the plantaris, a predominantly type II fiber muscle, mean fiber cross-sectional area increased by 57% with ACE-031 treatment. Analysis of myosin heavy chain (MHC) isoform transcripts by real-time PCR indicated no change in transcript levels in the soleus, but a decline in MHC I and IIa in the plantaris. In contrast, electrophoretic separation of total soleus and plantaris protein indicated that there was no change in the proportion of MHC isoforms in either muscle. Thus these data provide optimism that ACE-031 may be a viable therapeutic in the treatment of musculoskeletal diseases. Future studies should be undertaken to confirm that the observed effects are not age dependent or due to the relatively short study duration.


1992 ◽  
Vol 72 (1) ◽  
pp. 293-301 ◽  
Author(s):  
M. I. Lewis ◽  
S. A. Monn ◽  
G. C. Sieck

The influence of dexamethasone on diaphragm (DIA) fatigue, oxidative capacity, and fiber cross-sectional areas (CSA) was determined in growing hamsters. One group received dexamethasone by daily subcutaneous injection for 21 days (D animals), while pair-weight (P) and free-eating controls (CTL) received saline subcutaneously. Isometric contractile properties of the DIA were determined in vitro by supramaximal direct muscle stimulation in the presence of curare. DIA fatigue resistance was determined through repetitive stimulation at 40 pulses/s for 2 min. A computer-based image-processing system was used to histochemically determine muscle fiber-type proportions, CSA, and succinate dehydrogenase activities. The medial gastrocnemius muscle (MG) was used as a limb muscle control, with histochemical studies being performed on both the superficial (s) and deep/red (r) portions. Dexamethasone markedly attenuated the normal increment in body weight over the 3-wk period. DIA fatigue resistance was significantly reduced in the D compared with CTL and P animals. Dexamethasone had no effect on fiber-type proportions of the DIA or MGr (MGs contained only type II fibers). In the DIA, the CSA of type II fibers was reduced 33% in D and 18.5% in P animals compared with CTL. Although no significant atrophy was noted in the type I DIA fibers of either D or P animals, a trend toward significance was noted in D animals compared with CTL. In the MGs, the CSA of type II fibers was reduced 33% in D and 16.5% in P animals compared with CTL. Significant atrophy of type I and II fibers of the MGr was noted in D animals compared with CTL (33.8 and 35% reductions, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)


1989 ◽  
Vol 66 (5) ◽  
pp. 2196-2205 ◽  
Author(s):  
G. C. Sieck ◽  
M. I. Lewis ◽  
C. E. Blanco

The influence of prolonged nutritional deprivation on the succinate dehydrogenase (SDH) activity and cross-sectional areas of individual fibers in the rat diaphragm and deep portion of the medial gastrocnemius (MGr) muscles was determined. Fatigue resistance of the diaphragm was measured by means of an in vitro nerve-muscle strip preparation. Fiber SDH activity and cross-sectional area were quantified by means of an image processing system. Diaphragm fatigue resistance was significantly improved in the nutritionally deprived (ND) group. In both muscles, nutritional deprivation resulted in a significant decrease in fiber cross-sectional area (both type I and II), type II fibers showing greater atrophy. The SDH activities of type I and II fibers in the diaphragm were not affected by nutritional deprivation. This contrasted with a significant decrease in the SDH activity of both type I and II fibers in the MGr of ND animals. An assessment of the interrelationships between fiber atrophy and fiber SDH activity revealed a greater effect of malnutrition on those diaphragm type II fibers that had the lowest relative SDH activities and the largest cross-sectional areas. By comparison, the effect of malnutrition on type I and II fibers in the MGr was nonselective with regard to fiber SDH activity. We conclude that the enhanced diaphragm fatigue resistance in the ND animals does not result from an increase in the oxidative capacity of muscle fibers and is best explained by the pattern of diaphragm muscle fiber atrophy.


1991 ◽  
Vol 71 (2) ◽  
pp. 458-464 ◽  
Author(s):  
G. C. Sieck ◽  
M. Fournier ◽  
C. E. Blanco

postnatal development. Both twitch contraction time and half-relaxation time decreased progressively with age. Correspondingly, the force-frequency curve was shifted to the left early in development compared with adults. The ratio of peak twitch force to maximum tetanic force decreased with age. Fatigue resistance of the diaphragm was highest at birth and then progressively decreased with age. At birth, most diaphragm muscle fibers stained darkly for myofibrillar adenosinetriphosphatase after alkaline preincubation and thus would be classified histochemically as type II. During subsequent postnatal development, the proportion of type I fibers (lightly stained for adenosinetriphosphatase) increased while the number of type II fibers declined. At birth, type I fibers were larger than type II fibers. The size of both fiber types increased with age, but the increase in cross-sectional area was greater for type II fibers. On the basis of fiber type proportions and mean cross-sectional areas, type I fibers contributed 15% of total muscle mass at birth and 25% in adults. Thus postnatal changes in diaphragm contractile and fatigue properties cannot be attributed to changes in the relative contribution of histochemically classified type I and II fibers. However, the possibility that these developmental changes in diaphragm contractile and fatigue properties correlated with the varying contractile protein composition of muscle fibers was discussed.


1994 ◽  
Vol 77 (2) ◽  
pp. 947-955 ◽  
Author(s):  
M. I. Lewis ◽  
S. A. Monn ◽  
W. Z. Zhan ◽  
G. C. Sieck

Interactive effects of emphysema (EMP) and prolonged nutritional deprivation (ND) on contractile, morphometric, and metabolic properties of hamster diaphragm muscle (DIA) were examined. Six months after induction of EMP (intratracheal elastase), saline-treated controls (CTL) and EMP hamsters of similar body weights were subjected to ND over 6 wk. Isometric contractile and fatigue properties of costal DIA were determined in vitro. DIA fibers were histochemically classified as type I or II, and fiber succinate dehydrogenase activity and cross-sectional area were determined using quantitative microscopic procedures. From histochemical sections, the number of capillaries per fiber (C/F) and per fiber cross-sectional area (C/A) were determined. ND resulted in progressive loss of body weight (ND-CTL, 23.8%; ND-EMP, 28.4%; P = NS). ND did not affect reduction in optimal length (Lo) of DIA fibers in EMP compared with CTL and ND-CTL hamsters. Maximum specific force (i.e., force/unit area) was reduced by approximately 25% in EMP animals compared with CTL. ND did not improve or exacerbate the reduction in specific force with EMP. ND attenuated improved fatigue resistance of DIA in EMP animals. No differences in fiber type proportions were noted among experimental groups. Significant atrophy of type I and II DIA fibers was noted after ND. Atrophy was proportionately greater in type II fibers of ND-EMP when referenced to EMP animals. Thus adaptive hypertrophy of type II DIA fibers in EMP animals was abolished. Fiber succinate dehydrogenase activity was significantly increased in type I and II fibers in EMP DIA. ND did not affect this metabolic adaptation of DIA fibers to persistent loads imposed by EMP.(ABSTRACT TRUNCATED AT 250 WORDS)


1996 ◽  
Vol 8 (3) ◽  
pp. 391 ◽  
Author(s):  
MD Fratacci ◽  
M Levame ◽  
A Rauss ◽  
H Bousbaa ◽  
G Atlan

The changes occurring in the histochemical characteristics of the rat diaphragm during the postnatal period were examined. Fibre-type distribution, fibre oxidative capacity, i.e. succinate-dehydrogenase (SDH) activity, and cross-sectional area were compared in the costal (COS) and crural (CRU) regions, and across their abdominal and thoracic surfaces. The proportions of type I and IIb fibres in both COS and CRU increased with age, while the proportion of type IIa fibres progressively decreased. For COS, fibre distribution was homogeneous over the entire muscle and did not change after 4 weeks. For CRU, it was heterogeneous with a higher proportion of type I fibres on the thoracic surface as from the first week. All fibre types significantly increased in cross-sectional area between 1 and 8 weeks, with no significant differences in COS and CRU. Mean SDH activity did not differ between COS and CRU or across the muscles. Mean SDH activities-were low and identical in all fibre types at birth, and then increased, peaking at the 6th week in type I and IIa fibres. When total muscle fibre oxidative capacity was calculated from an index including fibre-type proportion, cross-sectional area and mean SDH activity, it was significantly higher at 1 than at 8 weeks after birth; this might have functional implications for the newborn.


1987 ◽  
Vol 63 (3) ◽  
pp. 1076-1082 ◽  
Author(s):  
G. C. Sieck ◽  
R. D. Sacks ◽  
C. E. Blanco

The oxidative capacity and cross-sectional area of muscle fibers were compared between the costal and crural regions of the cat diaphragm and across the abdominal-thoracic extent of the muscle. Succinate dehydrogenase (SDH) activity of individual fibers was quantified using a microphotometric procedure implemented on an image-processing system. In both costal and crural regions, population distributions of SDH activities were unimodal for both type I and II fibers. The continuous distribution of SDH activities for type II fibers indicated that no clear threshold exists for the subclassification of fibers based on differences in oxidative capacity (e.g., the classification of fast-twitch glycolytic and fast-twitch oxidative glycolytic fiber types). No differences in either SDH activity or cross-sectional area were noted between fiber populations of the costal and crural regions. Differences in SDH activity and cross-sectional area were noted, however, between fiber populations located on the abdominal and thoracic sides of the costal region. Both type I and II fibers on the abdominal side of the costal diaphragm were larger and more oxidative than comparable fibers on the thoracic side.


Author(s):  
Paul William Hendrickse ◽  
Tomas Venckunas ◽  
Justinas Platkevicius ◽  
Ramutis Kairaitis ◽  
Sigitas Kamandulis ◽  
...  

AbstractWhile concurrent training is regularly used in older populations, the inverse relationship between fibre size and oxidative capacity suggests that endurance training in resistance-trained individuals may result in some loss of resistance training-induced gains in muscle mass, which may be more pronounced in older people. We investigated the impact of superimposed endurance training in younger (28.5 ± 4.8 years; n = 8) and older (67.5 ± 5.5 years; n = 7) highly resistance-trained men. Participants underwent a 10-week endurance cycling training programme consisting of five 6-min intervals at 75% max heart rate (HRmax) separated by 4-min intervals at 90% HRmax. The anatomical cross-sectional area (ACSA) of the thigh muscles, as determined with MRI, was 24% smaller in older compared to younger participants (p < 0.001). Although maximal oxygen consumption (VO2max) was also lower in the older group (p < 0.001), VO2max per kg body mass did not differ significantly between younger and older participants. Histological analyses of biopsies of the m. vastus lateralis showed that endurance training induced an increase in succinate dehydrogenase activity in both younger and older participants (p ≤ 0.043), and an increase in the number of capillaries around type I fibres (p = 0.017). The superimposed endurance training did not induce a significant decrease in thigh ACSA, fibre cross-sectional area, or knee extensor maximum voluntary isometric force. These observations indicate that adding endurance training to resistance training can lead to positive endurance-related adaptations without negative consequences for muscle size and strength in older and younger resistance-trained people.


Sign in / Sign up

Export Citation Format

Share Document