Effects of selective sleep deprivation on ventilation during recovery sleep in normal humans

1992 ◽  
Vol 72 (1) ◽  
pp. 100-109 ◽  
Author(s):  
J. B. Neilly ◽  
N. B. Kribbs ◽  
G. Maislin ◽  
A. I. Pack

To assess the effects of selective sleep loss on ventilation during recovery sleep, we deprived 10 healthy young adult humans of rapid-eye-movement (REM) sleep for 48 h and compared ventilation measured during the recovery night with that measured during the baseline night. At a later date we repeated the study using awakenings during non-rapid-eye-movement (NREM) sleep at the same frequency as in REM sleep deprivation. Neither intervention produced significant changes in average minute ventilation during presleep wakefulness, NREM sleep, or the first REM sleep period. By contrast, both interventions resulted in an increased frequency of breaths, in which ventilation was reduced below the range for tonic REM sleep, and in an increased number of longer episodes, in which ventilation was reduced during the first REM sleep period on the recovery night. The changes after REM sleep deprivation were largely due to an increase in the duration of the REM sleep period with an increase in the total phasic activity and, to a lesser extent, to changes in the relationship between ventilatory components and phasic eye movements. The changes in ventilation after partial NREM sleep deprivation were associated with more pronounced changes in the relationship between specific ventilatory components and eye movement density, whereas no change was observed in the composition of the first REM sleep period. These findings demonstrate that sleep deprivation leads to changes in ventilation during subsequent REM sleep.

1995 ◽  
Vol 268 (6) ◽  
pp. R1456-R1463 ◽  
Author(s):  
T. Porkka-Heiskanen ◽  
S. E. Smith ◽  
T. Taira ◽  
J. H. Urban ◽  
J. E. Levine ◽  
...  

Noradrenergic locus ceruleus neurons are most active during waking and least active during rapid eye movement (REM) sleep. We expected REM sleep deprivation (REMSD) to increase norepinephrine utilization and activate the tyrosine hydroxylase (TH) gene critical for norepinephrine production. Male Wistar rats were deprived of REM sleep with the platform method. Rats were decapitated after 8, 24, or 72 h on small (REMSD) or large (control) platforms or after 8 or 24 h of rebound sleep after 72 h of the platform treatment. During the first 24 h, norepinephrine concentration, measured by high-performance liquid chromatography/electrochemical detection, was lower in the neocortex, hippocampus, and posterior hypothalamus in REMSD rats than in large-platform controls. After 72 h of REMSD, TH mRNA, measured by in situ hybridization, was increased in the locus ceruleus and norepinephrine concentrations were increased. Polygraphy showed that small-platform treatment caused effective and selective REMSD. Serum corticosterone measurement by radioimmunoassay indicated that the differences found in norepinephrine and TH mRNA were not due to differences in stress between the treatments. The novel finding of sleep deprivation-specific increase in TH gene expression indicates an important mechanism of adjusting to sleep deprivation.


SLEEP ◽  
2019 ◽  
Vol 43 (6) ◽  
Author(s):  
Sjoerd J van Hasselt ◽  
Maria Rusche ◽  
Alexei L Vyssotski ◽  
Simon Verhulst ◽  
Niels C Rattenborg ◽  
...  

Abstract Most of our knowledge about the regulation and function of sleep is based on studies in a restricted number of mammalian species, particularly nocturnal rodents. Hence, there is still much to learn from comparative studies in other species. Birds are interesting because they appear to share key aspects of sleep with mammals, including the presence of two different forms of sleep, i.e. non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. We examined sleep architecture and sleep homeostasis in the European starling, using miniature dataloggers for electroencephalogram (EEG) recordings. Under controlled laboratory conditions with a 12:12 h light–dark cycle, the birds displayed a pronounced daily rhythm in sleep and wakefulness with most sleep occurring during the dark phase. Sleep mainly consisted of NREM sleep. In fact, the amount of REM sleep added up to only 1~2% of total sleep time. Animals were subjected to 4 or 8 h sleep deprivation to assess sleep homeostatic responses. Sleep deprivation induced changes in subsequent NREM sleep EEG spectral qualities for several hours, with increased spectral power from 1.17 Hz up to at least 25 Hz. In contrast, power below 1.17 Hz was decreased after sleep deprivation. Sleep deprivation also resulted in a small compensatory increase in NREM sleep time the next day. Changes in EEG spectral power and sleep time were largely similar after 4 and 8 h sleep deprivation. REM sleep was not noticeably compensated after sleep deprivation. In conclusion, starlings display signs of NREM sleep homeostasis but the results do not support the notion of important REM sleep functions.


2016 ◽  
Vol 3 (10) ◽  
pp. 160201 ◽  
Author(s):  
Peter Achermann ◽  
Thomas Rusterholz ◽  
Roland Dürr ◽  
Thomas König ◽  
Leila Tarokh

Sleep is characterized by a loss of consciousness, which has been attributed to a breakdown of functional connectivity between brain regions. Global field synchronization (GFS) can estimate functional connectivity of brain processes. GFS is a frequency-dependent measure of global synchronicity of multi-channel EEG data. Our aim was to explore and extend the hypothesis of disconnection during sleep by comparing GFS spectra of different vigilance states. The analysis was performed on eight healthy adult male subjects. EEG was recorded during a baseline night, a recovery night after 40 h of sustained wakefulness and at 3 h intervals during the 40 h of wakefulness. Compared to non-rapid eye movement (NREM) sleep, REM sleep showed larger GFS values in all frequencies except in the spindle and theta bands, where NREM sleep showed a peak in GFS. Sleep deprivation did not affect GFS spectra in REM and NREM sleep. Waking GFS values were lower compared with REM and NREM sleep except for the alpha band. Waking alpha GFS decreased following sleep deprivation in the eyes closed condition only. Our surprising finding of higher synchrony during REM sleep challenges the view of REM sleep as a desynchronized brain state and may provide insight into the function of REM sleep.


1974 ◽  
Vol 2 (4) ◽  
pp. 553-556 ◽  
Author(s):  
Wallace B. Mendelson ◽  
Robert D. Guthrie ◽  
Ghislaine Frederick ◽  
Richard Jed Wyatt

2001 ◽  
Vol 900 (2) ◽  
pp. 261-267 ◽  
Author(s):  
S Hakki Onen ◽  
Abdelkrim Alloui ◽  
Didier Jourdan ◽  
Alain Eschalier ◽  
Claude Dubray

2000 ◽  
Vol 84 (5) ◽  
pp. 2699-2702 ◽  
Author(s):  
Adrián Ocampo-Garcés ◽  
Enrique Molina ◽  
Alberto Rodríguez ◽  
Ennio A. Vivaldi

During specific rapid eye movement (REM) sleep deprivation its homeostatic regulation is expressed by progressively more frequent attempts to enter REM and by a compensatory rebound after the deprivation ends. The buildup of pressure to enter REM may be hypothesized to depend just on the time elapsed without REM or to be differentially related to non-REM (NREM) and wakefulness. This problem bears direct implications on the issue of the function of REM and its relation to NREM. We compared three protocols that combined REM-specific and total sleep deprivation so that animals underwent similar 3-h REM deprivations but different concomitant NREM deprivations for the first 2 (2T1R), 1 (1T2R), or 0 (3R) hours. Deprivation periods started at hour 6 after lights on. Twenty-two chronically implanted rats were recorded. The median amount of REM during all three protocols was ∼1 min. The deficits of median amount of NREM in minutes within the 3-h deprivation periods as compared with their baselines were, respectively for 2T1R, 1T2R, and 3R, 35 (43%), 25 (25%), and 7 (7%). Medians of REM rebound in the three succeeding hours, in minutes above baseline, were, respectively, 8 (44%), 9 (53%), and 9 (50%), showing no significant differences among protocols. Attempted transitions to REM showed a rising trend during REM deprivations reaching a final value that did not differ significantly among the three protocols. These results support the hypothesis that the build up of REM pressure and its subsequent rebound is primarily related to REM absence independent of the presence of NREM.


2004 ◽  
Vol 97 (5) ◽  
pp. 1787-1795 ◽  
Author(s):  
Lee Friedman ◽  
Abby Haines ◽  
Ken Klann ◽  
Laura Gallaugher ◽  
Lawrence Salibra ◽  
...  

The pattern of breathing during sleep could be a heritable trait. Our intent was to test this genetic hypothesis in inbred mouse strains known to vary in breathing patterns during wakefulness (Han F, Subramanian S, Dick TE, Dreshaj IA, and Strohl KP. J Appl Physiol 91: 1962–1970, 2001; Han F, Subramanian S, Price ER, Nadeau J, and Strohl KP, J Appl Physiol 92: 1133–1140, 2002) to determine whether such differences persisted into non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. Measures assessed in C57BL/6J (B6; Jackson Laboratory) and two A/J strains (A/J Jackson and A/J Harlan) included ventilatory behavior [respiratory frequency, tidal volume, minute ventilation, mean inspiratory flow, and duty cycle (inspiratory time/total breath time)], and metabolism, as performed by the plethsmography method with animals instrumented to record EEG, electromyogram, and heart rate. In all strains, there were reductions in minute ventilation and CO2 production in NREM compared with wakefulness ( P < 0.001) and a further reduction in REM compared with NREM ( P < 0.001), but no state-by-stain interactions. Frequency showed strain ( P < 0.0001) and state-by-strain interactions ( P < 0.0001). The A/J Jackson did not change frequency in REM vs. NREM [141 ± 15 (SD) vs. 139 ± 14 breaths/min; P = 0.92], whereas, in the A/J Harlan, it was lower in REM vs. NREM (168 ± 14 vs. 179 ± 12 breaths/min; P = 0.0005), and, in the B6, it was higher in REM vs. NREM (209 ± 12 vs. 188 ± 13 breaths/min; P < 0.0001). Heart rate exhibited strain ( P = 0.003), state ( P < 0.0001), and state-by-strain interaction ( P = 0.017) and was lower in NREM sleep in the A/J Harlan ( P = 0.035) and B6 ( P < 0.0001). We conclude that genetic background affects features of breathing during NREM and REM sleep, despite broad changes in state, metabolism, and heart rate.


Sign in / Sign up

Export Citation Format

Share Document