Ventilatory behavior during sleep among A/J and C57BL/6J mouse strains

2004 ◽  
Vol 97 (5) ◽  
pp. 1787-1795 ◽  
Author(s):  
Lee Friedman ◽  
Abby Haines ◽  
Ken Klann ◽  
Laura Gallaugher ◽  
Lawrence Salibra ◽  
...  

The pattern of breathing during sleep could be a heritable trait. Our intent was to test this genetic hypothesis in inbred mouse strains known to vary in breathing patterns during wakefulness (Han F, Subramanian S, Dick TE, Dreshaj IA, and Strohl KP. J Appl Physiol 91: 1962–1970, 2001; Han F, Subramanian S, Price ER, Nadeau J, and Strohl KP, J Appl Physiol 92: 1133–1140, 2002) to determine whether such differences persisted into non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. Measures assessed in C57BL/6J (B6; Jackson Laboratory) and two A/J strains (A/J Jackson and A/J Harlan) included ventilatory behavior [respiratory frequency, tidal volume, minute ventilation, mean inspiratory flow, and duty cycle (inspiratory time/total breath time)], and metabolism, as performed by the plethsmography method with animals instrumented to record EEG, electromyogram, and heart rate. In all strains, there were reductions in minute ventilation and CO2 production in NREM compared with wakefulness ( P < 0.001) and a further reduction in REM compared with NREM ( P < 0.001), but no state-by-stain interactions. Frequency showed strain ( P < 0.0001) and state-by-strain interactions ( P < 0.0001). The A/J Jackson did not change frequency in REM vs. NREM [141 ± 15 (SD) vs. 139 ± 14 breaths/min; P = 0.92], whereas, in the A/J Harlan, it was lower in REM vs. NREM (168 ± 14 vs. 179 ± 12 breaths/min; P = 0.0005), and, in the B6, it was higher in REM vs. NREM (209 ± 12 vs. 188 ± 13 breaths/min; P < 0.0001). Heart rate exhibited strain ( P = 0.003), state ( P < 0.0001), and state-by-strain interaction ( P = 0.017) and was lower in NREM sleep in the A/J Harlan ( P = 0.035) and B6 ( P < 0.0001). We conclude that genetic background affects features of breathing during NREM and REM sleep, despite broad changes in state, metabolism, and heart rate.

1996 ◽  
Vol 270 (2) ◽  
pp. H723-H729 ◽  
Author(s):  
S. M. Zinkovska ◽  
E. K. Rodriguez ◽  
D. A. Kirby

Changes in autonomic tone in the vasculature during sleep may have important implications for silent ischemia and sudden cardiac death. Few models exist in which both cardiac output and coronary blood flow are continuously measured during natural sleep and autonomic mechanisms are assessed. Catheters were chronically implanted in the aorta to measure mean arterial pressure (MAP), and flow probes were placed on the ascending aorta and the circumflex coronary artery of 18 pigs. Electrodes determined sleep stage as either non-rapid eye movement (NREM) or rapid eye movement (REM) sleep. The MAP was 73 +/- 3 mmHg in the quiet awake state, did not change in NREM, and decreased to 64 +/- 2 mmHg in REM sleep (P < 0.05). In NREM sleep, heart rate did not change from awake state values of 136 +/- 8 beats/min but increased by 5 beats/min in REM sleep (P < 0.05). Coronary vascular resistance decreased from awake state values of 2.7 +/- 0.2 to 2.2 +/- 0.2 mmHg.ml-1.min in REM (P < 0.05); total peripheral resistance decreased from awake values of 0.061 +/- 0.004 mmHg.ml-1.min to 0.050 +/- 0.003 in REM sleep (P < 0.05). Those changes appear to have been mediated primarily by reduction of alpha-adrenergic activity. Spectral analysis of heart rate suggests that power in the high-frequency range (a presumed indicator of parasympathetic tone) was lower in REM sleep than NREM sleep.


SLEEP ◽  
2020 ◽  
Author(s):  
Shawn D X Kong ◽  
Camilla M Hoyos ◽  
Craig L Phillips ◽  
Andrew C McKinnon ◽  
Pinghsiu Lin ◽  
...  

Abstract Study Objectives Cardiovascular autonomic dysfunction, as measured by short-term diurnal heart rate variability (HRV), has been reported in older adults with mild cognitive impairment (MCI). However, it is unclear whether this impairment also exists during sleep in this group. We, therefore, compared overnight HRV during sleep in older adults with MCI and those with subjective cognitive impairment (SCI). Methods Older adults (n = 210) underwent overnight polysomnography. Eligible participants were characterized as multi-domain MCI or SCI. The multi-domain MCI group was comprised of amnestic and non-amnestic subtypes. Power spectral analysis of HRV was conducted on the overnight electrocardiogram during non-rapid eye movement (NREM), rapid eye movement (REM), N1, N2, N3 sleep stages, and wake periods. High-frequency HRV (HF-HRV) was employed as the primary measure to estimate parasympathetic function. Results The MCI group showed reduced HF-HRV during NREM sleep (p = 0.018), but not during wake or REM sleep (p &gt; 0.05) compared to the SCI group. Participants with aMCI compared to SCI had the most pronounced reduction in HF-HRV across all NREM sleep stages—N1, N2, and N3, but not during wake or REM sleep. The naMCI sub-group did not show any significant differences in HF-HRV during any sleep stage compared to SCI. Conclusions Our study showed that amnestic MCI participants had greater reductions in HF-HRV during NREM sleep, relative to those with SCI, suggesting potential vulnerability to sleep-related parasympathetic dysfunction. HF-HRV, especially during NREM sleep, may be an early biomarker for dementia detection.


1991 ◽  
Vol 261 (3) ◽  
pp. R738-R746 ◽  
Author(s):  
R. Lydic ◽  
H. A. Baghdoyan ◽  
R. Wertz ◽  
D. P. White

Breathing is impaired by the loss of wakefulness that accompanies sleep, certain comatose states, and anesthesia. Although state-dependent decrements in breathing and the ability to respond to hypercapnic stimuli are characteristic of most mammals, the neural mechanisms that cause state-dependent changes in respiratory control remain poorly understood. The present study examined the hypothesis that cholinergic mechanisms in the medial pontine reticular formation (mPRF) can cause state-dependent changes in breathing and in the hypercapnic ventilatory response (HCVR). Six cats were anesthetized with halothane and chronically instrumented for subsequent studies of breathing during wakefulness, non-rapid-eye-movement (NREM) sleep, rapid-eye-movement (REM) sleep, and during the REM sleep-like state caused by mPRF microinjections of carbachol or bethanechol. Minute ventilation was significantly decreased during the carbachol-induced REM sleep-like state (DCarb) compared with wakefulness. The HCVR in NREM, REM, DCarb, and after bethanechol was less than the waking HCVR. These results show for the first time that cholinoceptive regions in the mPRF can cause state-dependent reductions in normocapnic minute ventilation and in the ventilatory response to hypercapnia.


1992 ◽  
Vol 72 (1) ◽  
pp. 100-109 ◽  
Author(s):  
J. B. Neilly ◽  
N. B. Kribbs ◽  
G. Maislin ◽  
A. I. Pack

To assess the effects of selective sleep loss on ventilation during recovery sleep, we deprived 10 healthy young adult humans of rapid-eye-movement (REM) sleep for 48 h and compared ventilation measured during the recovery night with that measured during the baseline night. At a later date we repeated the study using awakenings during non-rapid-eye-movement (NREM) sleep at the same frequency as in REM sleep deprivation. Neither intervention produced significant changes in average minute ventilation during presleep wakefulness, NREM sleep, or the first REM sleep period. By contrast, both interventions resulted in an increased frequency of breaths, in which ventilation was reduced below the range for tonic REM sleep, and in an increased number of longer episodes, in which ventilation was reduced during the first REM sleep period on the recovery night. The changes after REM sleep deprivation were largely due to an increase in the duration of the REM sleep period with an increase in the total phasic activity and, to a lesser extent, to changes in the relationship between ventilatory components and phasic eye movements. The changes in ventilation after partial NREM sleep deprivation were associated with more pronounced changes in the relationship between specific ventilatory components and eye movement density, whereas no change was observed in the composition of the first REM sleep period. These findings demonstrate that sleep deprivation leads to changes in ventilation during subsequent REM sleep.


1986 ◽  
Vol 61 (4) ◽  
pp. 1279-1287 ◽  
Author(s):  
D. P. White

Previous investigation in normal humans has demonstrated reduced ventilation and ventilatory responses to chemical stimuli during sleep. Most have interpreted this to be a product of decreasing central nervous system sensitivity to the normal stimuli that maintain ventilation, whereas other factors such as increasing airflow resistance could also contribute to this reduction in respiration. To improve our understanding of these events, we measured ventilation and occlusion pressures (P0.1) during unstimulated ventilation and rebreathing-induced hypercapnia during wakefulness and non-rapid-eye-movement (NREM) and rapid-eye-movement (REM) sleep. Eighteen subjects (10 males and 8 females) of whom seven were snorers (5 males and 2 females) were studied. Ventilation was reduced during both NREM and REM sleep (P less than 0.05), but this decrement in minute ventilation tended to be greater in snorers than nonsnorers. Unstimulated P0.1, on the other hand, was maintained or increased during sleep in all groups studied, with males and snorers showing the largest increase. The hypercapnic ventilatory response fell during both NREM and REM sleep and tended to be lower during REM than NREM sleep. However, the P0.1 response to hypercapnia during NREM sleep was well maintained at the waking level although the REM response was statistically reduced. These studies suggest that the mechanism of the reduction in ventilation and the hypercapnic ventilatory response seen during sleep, particularly NREM sleep, is likely to be multifactorial and not totally a product of decreasing central respiratory drive.


1993 ◽  
Vol 75 (4) ◽  
pp. 1439-1443 ◽  
Author(s):  
J. M. Pinto ◽  
E. Garpestad ◽  
J. W. Weiss ◽  
D. M. Bergau ◽  
D. A. Kirby

To study the effects of airway obstruction (AWO) and arousal on coronary blood flow, mean arterial pressure (MAP), and heart rate, pigs were chronically instrumented with arterial catheters, Doppler flow probes on the left circumflex coronary artery, and electrodes for determination of sleep stages. A modified tracheostomy tube was placed in the trachea to obstruct the upper airway during sleep sessions. In control studies, during non-rapid-eye-movement (NREM) sleep, MAP was 84 +/- 2 mmHg before AWO and increased by 5 +/- 2 mmHg on arousal. MAP was lower during rapid-eye-movement (REM) sleep (62 +/- 2 mmHg), and the increase on arousal was fourfold greater (22 +/- 2 mmHg). Heart rate was similar in both sleep stages (NREM: 120 +/- 4 beats/min; REM: 124 +/- 5 beats/min) and increased significantly on arousal (NREM: 12 +/- 2 beats/min; REM: 18 +/- 1 beats/min). Coronary blood flow was similar during both stages (NREM: 43 +/- 4 ml/min; REM: 46 +/- 8 ml/min) and increased by 12–15% on arousal. Coronary vascular resistance index increased significantly by 24% on arousal from AWO during REM sleep. All increases and decreases were significant at P < 0.05. Receptor blockade studies were performed to assess alpha-adrenergic receptor involvement.


1995 ◽  
Vol 79 (3) ◽  
pp. 689-699 ◽  
Author(s):  
C. A. Smith ◽  
K. W. Saupe ◽  
K. S. Henderson ◽  
J. A. Dempsey

We used extracorporeal perfusion of the vascularly isolated carotid sinus region to determine the effects of specific carotid body chemoreceptor hypocapnia-alkalosis on ventilatory control in the unanesthetized dog. Eight female dogs were studied during wakefulness, non-rapid-eye-movement (NREM) sleep, and rapid eye movement (REM) sleep. Carotid body perfusions lasted from 1 to 2 min, and each trial was preceded by a 1-min control period. Two levels of carotid body hypocapnia were employed, approximately 7 and 14 Torr below eupneic levels in a given dog. We found that 1) During wakefulness and NREM sleep, carotid body hypocapnia caused reduced tidal volume (VT) but not apnea or expiratory time prolongation. 2) The inhibition of ventilation in response to carotid body hypocapnia was graded below normocapnia, showing the highest sensitivity at carotid body PCO2 near 7 Torr below eupneic values. Inhibition reached a maximum near 14 Torr below the eupneic level; VT, inspiratory minute ventilation (VI), and VT-to-inspiratory time ratio fell 31, 23, and 27% in wakefulness and 30, 23, and 30% in NREM sleep. 3) Reductions in ventilation in response to carotid body hypocapnia are lessened but still persist throughout perfusion (up to at least 130 s) despite significant systemic hypercapnia. 4) During REM sleep, carotid body hypocapnia had no consistent inhibitory effect on ventilation until carotid body PCO2 was reduced to values near 14 Torr below the eupneic level, at which point ventilation was similar to wakefulness and NREM. 5) Moderate carotid body hypocapnia was as effective as carotid body hyperoxia in reducing VT and VI. We conclude that carotid body hypocapnia-alkalosis can significantly inhibit eupneic VT and ventilation during wakefulness and NREM sleep and, if the hypocapnia is severe enough, during REM sleep.


2010 ◽  
Vol 298 (1) ◽  
pp. R34-R42 ◽  
Author(s):  
Takafumi Kato ◽  
Yuji Masuda ◽  
Hayato Kanayama ◽  
Norimasa Nakamura ◽  
Atsushi Yoshida ◽  
...  

Exaggerated jaw motor activities during sleep are associated with muscle symptoms in the jaw-closing rather than the jaw-opening muscles. The intrinsic activity of antagonistic jaw muscles during sleep remains unknown. This study aims to assess the balance of muscle activity between masseter (MA) and digastric (DG) muscles during sleep in guinea pigs. Electroencephalogram (EEG), electroocculogram, and electromyograms (EMGs) of dorsal neck, MA, and DG muscles were recorded with video during sleep-wake cycles. These variables were quantified for each 10-s epoch. The magnitude of muscle activity during sleep in relation to mean EMG activity of total wakefulness was up to three times higher for MA muscle than for DG muscle for nonrapid eye movement (NREM) and rapid-eye-movement (REM) sleep. Although the activity level of the two jaw muscles fluctuated during sleep, the ratio of activity level for each epoch was not proportional. Epochs with a high activity level for each muscle were associated with a decrease in δEEG power and/or an increase in heart rate in NREM sleep. However, this association with heart rate and activity levels was not observed in REM sleep. These results suggest that in guinea pigs, the magnitude of muscle activity for antagonistic jaw muscles is heterogeneously modulated during sleep, characterized by a high activity level in the jaw-closing muscle. Fluctuations in the activity are influenced by transient arousal levels in NREM sleep but, in REM sleep, the distinct controls may contribute to the fluctuation. The above intrinsic characteristics could underlie the exaggeration of jaw motor activities during sleep (e.g., sleep bruxism).


2015 ◽  
Author(s):  
Sudhansu Chokroverty

Recent research has generated an enormous fund of knowledge about the neurobiology of sleep and wakefulness. Sleeping and waking brain circuits can now be studied by sophisticated neuroimaging techniques that map different areas of the brain during different sleep states and stages. Although the exact biologic functions of sleep are not known, sleep is essential, and sleep deprivation leads to impaired attention and decreased performance. Sleep is also believed to have restorative, conservative, adaptive, thermoregulatory, and consolidative functions. This review discusses the physiology of sleep, including its two independent states, rapid eye movement (REM) and non–rapid eye movement (NREM) sleep, as well as functional neuroanatomy, physiologic changes during sleep, and circadian rhythms. The classification and diagnosis of sleep disorders are discussed generally. The diagnosis and treatment of the following disorders are described: obstructive sleep apnea syndrome, narcolepsy-cataplexy sydrome, idiopathic hypersomnia, restless legs syndrome (RLS) and periodic limb movements in sleep, circadian rhythm sleep disorders, insomnias, nocturnal frontal lobe epilepsy, and parasomnias. Sleep-related movement disorders and the relationship between sleep and psychiatric disorders are also discussed. Tables describe behavioral and physiologic characteristics of states of awareness, the international classification of sleep disorders, common sleep complaints, comorbid insomnia disorders, causes of excessive daytime somnolence, laboratory tests to assess sleep disorders, essential diagnostic criteria for RLS and Willis-Ekbom disease, and drug therapy for insomnia. Figures include polysomnographic recording showing wakefulness in an adult; stage 1, 2, and 3 NREM sleep in an adult; REM sleep in an adult; a patient with sleep apnea syndrome; a patient with Cheyne-Stokes breathing; a patient with RLS; and a patient with dream-enacting behavior; schematic sagittal section of the brainstem of the cat; schematic diagram of the McCarley-Hobson model of REM sleep mechanism; the Lu-Saper “flip-flop” model; the Luppi model to explain REM sleep mechanism; and a wrist actigraph from a man with bipolar disorder. This review contains 14 highly rendered figures, 8 tables, 115 references, and 5 MCQs.


1984 ◽  
Vol 56 (1) ◽  
pp. 133-137 ◽  
Author(s):  
D. W. Hudgel ◽  
R. J. Martin ◽  
B. Johnson ◽  
P. Hill

The purposes of this investigation were to describe the changes in 1) dynamic compliance of the lungs, 2) airflow resistance, and 3) breathing pattern that occur during sleep in normal adult humans. Six subjects wore a tightly fitting face mask. Flow and volume were obtained from a pneumotachograph attached to the face mask. Transpulmonary pressure was calculated as the difference between esophageal pressure obtained with a balloon and mask pressure. At least 20 consecutive breaths were analyzed for dynamic compliance, airflow resistance, and breathing pattern during wakefulness, non-rapid-eye-movement stage 2 and rapid-eye-movement (REM) sleep. Dynamic compliance did not change significantly. Airflow resistance increased during sleep; resistance was 3.93 +/- 0.56 cmH2O X 1–1 X s during wakefulness, 7.96 +/- 0.95 in stage 2 sleep, and 8.66 +/- 1.43 in REM sleep (P less than 0.02). By placing a catheter in the retroepiglottic space and thus dividing the airway into upper and lower zones, we found the increase in resistance occurred almost entirely above the larynx. Decreases in tidal volume, minute ventilation, and mean inspiratory flow observed during sleep were not statistically significant.


Sign in / Sign up

Export Citation Format

Share Document