Time course of augmentation and depression of hypoxic ventilatory responses at altitude

1994 ◽  
Vol 77 (1) ◽  
pp. 313-316 ◽  
Author(s):  
M. Sato ◽  
J. W. Severinghaus ◽  
P. Bickler

Hypoxic ventilatory response (HVR) and hypoxic ventilatory depression (HVD) were measured in six subjects before, during, and after 12 days at 3,810-m altitude (barometric pressure approximately 488 Torr) with and without 15 min of preoxygenation. HVR was tested by 5-min isocapnic steps to 75% arterial O2 saturation measured by pulse oximetry (Spo2) at an isocapnic PCO2 (P*CO2) chosen to set hyperoxic resting ventilation to 140 ml.kg-1.min-1. Hypercapnic ventilatory response (HCVR, 1.min-1.Torr-1) was tested at ambient and high SPO2 6–8 min after a 6- to 10-Torr step increase of end-tidal PCO2 (PETCO2) above P*CO2. HCVR was independent of preoxygenation and was not significantly increased at altitude (when corrected to delta logPCO2). Preoxygenated HVR rose from -1.13 +/- 0.23 (SE) l.min-1.%SPO2(-1) at sea level to -2.17 +/- 0.13 by altitude day 12, without reaching a plateau, and returned to control after return to sea level for 4 days. Ambient HVR was measured at P*CO2 by step reduction of SPO2 from its ambient value (86–91%) to approximately 75%. Ambient HVR slope was not significantly less, but ventilation at equal levels of SPO2 and PCO2 was lower by 13.3 +/- 2.4 l/min on day 2 (SPO2 = 86.2 +/- 2.3) and by 5.9 +/- 3.5 l/min on day 12 (SPO2 = 91.0 +/- 1.5; P < 0.05). This lower ventilation was estimated (from HCVR) to be equivalent to an elevation of the central chemoreceptor PCO2 set point of 9.2 +/- 2.1 Torr on day 2 and 4.5 +/- 1.3 on day 12.(ABSTRACT TRUNCATED AT 250 WORDS)

1993 ◽  
Vol 75 (3) ◽  
pp. 1117-1122 ◽  
Author(s):  
J. T. Reeves ◽  
R. E. McCullough ◽  
L. G. Moore ◽  
A. Cymerman ◽  
J. V. Weil

There is considerable variation among individuals in the extent of, and the time required for, ventilatory acclimatization to altitude. Factors related to this variation are unclear. The present study tested whether interindividual variation in preascent ventilation or magnitude of hypoxic ventilatory response related to ventilatory acclimatization to altitude. Measurements in 37 healthy resting male subjects at sea level indicated a wide range (34–48 Torr) of end-tidal PCO2 values. When these subjects were taken to Pikes Peak, CO (4,300 m, barometric pressure 462 mmHg), the end-tidal PCO2 values measured on arrival and repeatedly over 19 days were correlated with the sea-level end-tidal PCO2. At 4,300 m, subjects with high end-tidal PCO2 had low values of arterial oxygen saturation (SaO2). Also, sea-level end-tidal PCO2 related to SaO2 after 19 days at 4,300 m. Twenty-six of the subjects had measurements of isocapnic hypoxic ventilatory response (HVR) at sea level. The end-tidal PCO2 values on arrival and after 19 days residence at 4,300 m were inversely related to the sea-level HVR values. Thus both the PCO2 and the HVR as measured at sea level related to the extent of subsequent ventilatory acclimatization (decrease in end-tidal PCO2) and the level of oxygenation at altitude. The finding in our cohort of subjects that sea-level end-tidal PCO2 was inversely related to HVR raised the possibility that among individuals the magnitude of the hypoxic drive to breathe influenced the amount of ventilation at all altitudes, including sea level.


1992 ◽  
Vol 73 (1) ◽  
pp. 101-107 ◽  
Author(s):  
M. Sato ◽  
J. W. Severinghaus ◽  
F. L. Powell ◽  
F. D. Xu ◽  
M. J. Spellman

To test the hypothesis that the hypoxic ventilatory response (HVR) of an individual is a constant unaffected by acclimatization, isocapnic 5-min step HVR, as delta VI/delta SaO2 (l.min-1.%-1, where VI is inspired ventilation and SaO2 is arterial O2 saturation), was tested in six normal males at sea level (SL), after 1–5 days at 3,810-m altitude (AL1-3), and three times over 1 wk after altitude exposure (PAL1-3). Equal medullary central ventilatory drive was sought at both altitudes by testing HVR after greater than 15 min of hyperoxia to eliminate possible ambient hypoxic ventilatory depression (HVD), choosing for isocapnia a P′CO2 (end tidal) elevated sufficiently to drive hyperoxic VI to 140 ml.kg-1.min-1. Mean P′CO2 was 45.4 +/- 1.7 Torr at SL and 33.3 +/- 1.8 Torr on AL3, compared with the respective resting control end-tidal PCO2 of 42.3 +/- 2.0 and 30.8 +/- 2.6 Torr. SL HVR of 0.91 +/- 0.38 was unchanged on AL1 (30 +/- 18 h) at 1.04 +/- 0.37 but rose (P less than 0.05) to 1.27 +/- 0.57 on AL2 (3.2 +/- 0.8 days) and 1.46 +/- 0.59 on AL3 (4.8 +/- 0.4 days) and remained high on PAL1 at 1.44 +/- 0.54 and PAL2 at 1.37 +/- 0.78 but not on PAL3 (days 4–7). HVR was independent of test SaO2 (range 60–90%). Hyperoxic HCVR (CO2 response) was increased on AL3 and PAL1. Arterial pH at congruent to 65% SaO2 was 7.378 +/- 0.019 at SL, 7.44 +/- 0.018 on AL2, and 7.412 +/- 0.023 on AL3.(ABSTRACT TRUNCATED AT 250 WORDS)


2004 ◽  
Vol 97 (5) ◽  
pp. 1673-1680 ◽  
Author(s):  
Chris Morelli ◽  
M. Safwan Badr ◽  
Jason H. Mateika

We hypothesized that the acute ventilatory response to carbon dioxide in the presence of low and high levels of oxygen would increase to a greater extent in men compared with women after exposure to episodic hypoxia. Eleven healthy men and women of similar race, age, and body mass index completed a series of rebreathing trials before and after exposure to eight 4-min episodes of hypoxia. During the rebreathing trials, subjects initially hyperventilated to reduce the end-tidal partial pressure of carbon dioxide (PetCO2) below 25 Torr. Subjects then rebreathed from a bag containing a normocapnic (42 Torr), low (50 Torr), or high oxygen gas mixture (150 Torr). During the trials, PetCO2 increased while the selected level of oxygen was maintained. The point at which minute ventilation began to rise in a linear fashion as PetCO2 increased was considered to be the carbon dioxide set point. The ventilatory response below and above this point was determined. The results showed that the ventilatory response to carbon dioxide above the set point was increased in men compared with women before exposure to episodic hypoxia, independent of the oxygen level that was maintained during the rebreathing trials (50 Torr: men, 5.19 ± 0.82 vs. women, 4.70 ± 0.77 l·min−1·Torr−1; 150 Torr: men, 4.33 ± 1.15 vs. women, 3.21 ± 0.58 l·min−1·Torr−1). Moreover, relative to baseline measures, the ventilatory response to carbon dioxide in the presence of low and high oxygen levels increased to a greater extent in men compared with women after exposure to episodic hypoxia (50 Torr: men, 9.52 ± 1.40 vs. women, 5.97 ± 0.71 l·min−1·Torr−1; 150 Torr: men, 5.73 ± 0.81 vs. women, 3.83 ± 0.56 l·min−1·Torr−1). Thus we conclude that enhancement of the acute ventilatory response to carbon dioxide after episodic hypoxia is sex dependent.


1987 ◽  
Vol 63 (1) ◽  
pp. 401-412 ◽  
Author(s):  
D. P. White ◽  
K. Gleeson ◽  
C. K. Pickett ◽  
A. M. Rannels ◽  
A. Cymerman ◽  
...  

Although the influence of altitude acclimatization on respiration has been carefully studied, the associated changes in hypoxic and hypercapnic ventilatory responses are the subject of controversy with neither response being previously evaluated during sleep at altitude. Therefore, six healthy males were studied at sea level and on nights 1, 4, and 7 after arrival at altitude (14,110 ft). During wakefulness, ventilation and the ventilatory responses to hypoxia and hypercapnia were determined on each occasion. During both non-rapid-eye-movement and rapid-eye-movement sleep, ventilation, ventilatory pattern, and the hypercapnic ventilatory response (measured at ambient arterial O2 saturation) were determined. There were four primary observations from this study: 1) the hypoxic ventilatory response, although similar to sea level values on arrival at altitude, increased steadily with acclimatization up to 7 days; 2) the slope of the hypercapnic ventilatory response increased on initial exposure to a hypoxic environment (altitude) but did not increase further with acclimatization, although the position of this response shifted steadily to the left (lower PCO2 values); 3) the sleep-induced decrements in both ventilation and hypercapnic responsiveness at altitude were equivalent to those observed at sea level with similar acclimatization occurring during wakefulness and sleep; and 4) the quantity of periodic breathing during sleep at altitude was highly variable and tended to occur more frequently in individuals with higher ventilatory responses to both hypoxia and hypercapnia.


2001 ◽  
Vol 91 (4) ◽  
pp. 1791-1799 ◽  
Author(s):  
Stephen R. Muza ◽  
Paul B. Rock ◽  
Charles S. Fulco ◽  
Stacy Zamudio ◽  
Barry Braun ◽  
...  

Women living at low altitudes or acclimatized to high altitudes have greater effective ventilation in the luteal (L) compared with follicular (F) menstrual cycle phase and compared with men. We hypothesized that ventilatory acclimatization to high altitude would occur more quickly and to a greater degree in 1) women in their L compared with women in their F menstrual cycle phase, and 2) in women compared with men. Studies were conducted on 22 eumenorrheic, unacclimatized, sea-level (SL) residents. Indexes of ventilatory acclimatization [resting ventilatory parameters, hypoxic ventilatory response, hypercapnic ventilatory response (HCVR)] were measured in 14 women in the F phase and in 8 other women in the L phase of their menstrual cycle, both at SL and again during a 12-day residence at 4,300 m. At SL only, ventilatory studies were also completed in both menstrual cycle phases in 12 subjects (i.e., within-subject comparison). In these subjects, SL alveolar ventilation (expressed as end-tidal Pco 2) was greater in the L vs. F phase. Yet the comparison between L- and F-phase groups found similar levels of resting end-tidal Pco 2, hypoxic ventilatory response parameter A, HCVR slope, and HCVR parameter B, both at SL and 4,300 m. Moreover, these indexes of ventilatory acclimatization were not significantly different from those previously measured in men. Thus female lowlanders rapidly ascending to 4,300 m in either the L or F menstrual cycle phase have similar levels of alveolar ventilation and a time course for ventilatory acclimatization that is nearly identical to that reported in male lowlanders.


1983 ◽  
Vol 54 (6) ◽  
pp. 1457-1462 ◽  
Author(s):  
S. R. Muza ◽  
L. Y. Lee ◽  
R. L. Wiley ◽  
S. McDonald ◽  
F. W. Zechman

Previous research indicates that fatiguing static exercise causes hyperventilation and a decrease of end-tidal CO2 partial pressure PETCO2. The objectives of this study were 1) to examine the changes in pattern of breathing during static exercise, and 2) to define the isocapnic ventilatory response. Six healthy males were studied once a week at one of three levels of static handgrip exercise: 15, 25, or 30% maximum voluntary contraction (MVC) was sustained for 5 min while holding PETCO2 constant or allowing it to run free. During 25 and 30% MVC, we observed 1) progressive increases in mean tidal volume (VT), inspiratory ventilation (VI), VT/TI, heart rate (HR), and arterial BP, 2) increased breath-to-breath variability of VT, 3) no significant changes in respiratory frequency (f), and 4) progressive decreases in PETCO2. Keeping PETCO2 constant at preexercise levels did not change the pattern or magnitude of the ventilatory response to exercise. The time course and magnitude of the subjects' perceived effort resembled the time course and magnitude of the ventilatory response. The variability of VT during the response to static exercise suggests an element of control instability. The identical ventilatory responses during hypocapnic and isocapnic conditions may result from the slow response of the central chemoreceptors; an overriding influence of muscle afferents; and/or increased central command arising with fatigue.


1991 ◽  
Vol 70 (2) ◽  
pp. 748-755 ◽  
Author(s):  
K. Tatsumi ◽  
C. K. Pickett ◽  
J. V. Weil

Prolonged exposure to hypoxia is accompanied by decreased hypoxic ventilatory response (HVR), but the relative importance of peripheral and central mechanisms of this hypoxic desensitization remain unclear. To determine whether the hypoxic sensitivity of peripheral chemoreceptors decreases during chronic hypoxia, we measured ventilatory and carotid sinus nerve (CSN) responses to isocapnic hypoxia in five cats exposed to simulated altitude of 5,500 m (barometric pressure 375 Torr) for 3-4 wk. Exposure to 3-4 wk of hypobaric hypoxia produced a decrease in HVR, measured as the shape parameter A in cats both awake (from 53.9 +/- 10.1 to 14.8 +/- 1.8; P less than 0.05) and anesthetized (from 50.2 +/- 8.2 to 8.5 +/- 1.8; P less than 0.05). Sustained hypoxic exposure decreased end-tidal CO2 tension (PETCO2, 33.3 +/- 1.2 to 28.1 +/- 1.3 Torr) during room-air breathing in awake cats. To determine whether hypocapnia contributed to the observed depression in HVR, we also measured eucapnic HVR (PETCO2 33.3 +/- 0.9 Torr) and found that HVR after hypoxic exposure remained lower than preexposed value (A = 17.4 +/- 4.2 vs. 53.9 +/- 10.1 in awake cats; P less than 0.05). A control group (n = 5) was selected for hypoxic ventilatory response matched to the baseline measurements of the experimental group. The decreased HVR after hypoxic exposure was associated with a parallel decrease in the carotid body response to hypoxia (A = 20.6 +/- 4.8) compared with that of control cats (A = 46.9 +/- 6.3; P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)


1994 ◽  
Vol 77 (4) ◽  
pp. 1763-1768 ◽  
Author(s):  
T. Igarashi ◽  
M. Nishimura ◽  
Y. Akiyama ◽  
M. Yamamoto ◽  
K. Miyamoto ◽  
...  

To examine the role of endogenous adenosine on the hypoxic ventilatory response (HVR) enhanced during exercise, we measured HVR at rest and during mild exercise (12.5 W) in nine healthy men in a supine position after pretreatment with aminophylline (5 mg/kg), an adenosine receptor blocker, or dipyridamole (0.6 mg/kg), an adenosine uptake blocker, by using a 3-day double-blind placebo-controlled design. Although HVR was enhanced during exercise on all occasions, HVR with aminophylline [0.42 +/- 0.07 (SE) l.min-1.%fall-1 of arterial O2 saturation] was significantly lower than that with placebo (0.64 +/- 0.13 l.min-1.%fall-1) or dipyridamole (0.64 +/– 0.08 l.min-1.%fall-1) during exercise (P < 0.05 for both) at similar end-tidal PCO2 on the 3 days but not at rest. We then examined the changes in plasma K+ concentration ([K+]) and catecholamines, the other possible endogenous potentiators of the carotid body activity. The exercise- and hypoxia-induced increases in plasma [K+] were significantly lower with aminophylline (0.23 +/- 0.09 meq/l) than with the placebo (0.51 +/- 0.10 meq/l) or dypyridamole (0.58 +/- 0.13 meq/l) (P < 0.05 for both). We therefore conclude that aminophylline attenuates the enhancement of HVR during mild exercise and that this might be due to its attenuating effect on exercise- and hypoxia-associated increases in plasma [K+] rather than due to its antagonizing effect on endogenous adenosine.


1980 ◽  
Vol 48 (5) ◽  
pp. 892-895 ◽  
Author(s):  
H. E. Jeffery ◽  
D. J. Read

Isocapnic progressive hypoxia was produced by rebreathing 8-10% oxygen in replicate tests during quiet and active sleep, in five full-term calves aged 1-8 days. Airflow through a tightly fitting mask was digitized at 50-ms intervals to calculate breath-by-breath ventilation and rate. Using a cuvette oximeter, arterial O2 saturation (SaO2) was recorded continuously. A mass-spectrometer record of end-tidal PO2 and PCO2 confirmed the mask seal and the constancy of PCO2. Sleep state was characterized by EEG, EOG, neck EMG, and behavior. In quiet sleep the ratio of ventilation to its normoxic control (VR) increased linearly as SaO2 fell; reflex arousal occurred at SaO2 84.9 ± 4.3% (SD) with VR 1.4 ± 0.39 (SD). In contrast, during active sleep, hypoxemia progressed without any ventilatory response to a very low SaO2; a reflex arousal occurred at SaO2 59.2 ±11.0%, often with a ventilatory response developing abruptly just prior to arousal. The slope of the VR/SaO2 regression lines for the overlapping range of SaO2 differed significantly with state in each animal (P < 0.001); the pooled VR values at SaO2 75% were 1.73± 0.15 (SD) and 0.91 ± 0.18 for quiet and active sleep respectively. The depression of the ventilatory response to hypoxia in active sleep differs from previous reports on adult dogs. The basis for this difference needs to be evaluated in relation to species and age, in particular in relation to both the mechanics of breathing and to chemoreceptor reflexes.


1977 ◽  
Vol 43 (6) ◽  
pp. 971-976 ◽  
Author(s):  
D. J. Riley ◽  
B. A. Legawiec ◽  
T. V. Santiago ◽  
N. H. Edelman

Hypercapnic and hypoxic ventilatory responses were serially measured in nine normal subjects given 3.9 g aspirin (ASA) per day for 9 days. Minute ventilation (VE), end-tidal carbon dioxide tension (PETCO2), venous bicarbonate concentration [HCO3-], oxygen consumption (VO2), hypercapnic ventilatory response (deltaVE/deltaPCO2), and isocapnic hypoxic ventilatory response (A) were determined before, 2 h after the first dose, and at 72-h intervals during the next 14 days. Serum salicylate levels averaged 18.6 +/- 2.0 mg/dl. VE increased (P less than 0.05, PETCO2 decreased (P less than 0.05), and [HCO3-] did not change significantly during drug ingestion. deltaVE/deltaPCO2 increased gradually to a value 37% greater than control by day 3 and remained constant (P less 0.01). A increased by 251% and VO2 by 18% within 2 h and remained constant for the remainder of the ASA period (P less than 0.01). All values returned to base line within 24 h following cessation of ASA. We conclude that during continuous ASA ingestion there is a gradual increase of hypercapnic ventilatory response. This may reflect slow entrance of ASA into the central nervous system. In contrast, there is a rapid rise in hypoxic ventilatory response which may be mechanically linked to changes in metabolic rate.


Sign in / Sign up

Export Citation Format

Share Document