Developmental differences in vascular responses to hypoxia in lungs of rabbits

1994 ◽  
Vol 77 (2) ◽  
pp. 507-516 ◽  
Author(s):  
C. D. Fike ◽  
M. R. Kaplowitz

Our purpose was to determine whether postnatal age and prostaglandins influence the sites of hypoxic vasoconstriction in lungs of rabbits. To do this, we used the micropuncture technique to measure pressures in 20- to 80-microns-diam subpleural arterioles and venules during sequential inflation of lungs of newborn and adult rabbits with normoxic (21% O2–7–10% CO2–69–72% N2) and hypoxic (90–93% N2–7–10% CO2) gas mixtures. Indomethacin (40 micrograms/ml) was added to the perfusate of some lungs of each age group. During hypoxia in untreated lungs of newborn rabbits, both pulmonary arterial and 20- to 80-microns-diam arteriolar pressure increased by 5%, whereas 20- to 80-microns-diam venular pressure remained the same. In contrast, during hypoxia in untreated lungs of adult rabbits, pulmonary arterial pressure increased by 48%, whereas 20- to 80-microns-diam arteriolar pressure decreased slightly and 20- to 80-microns-diam venular pressure did not change. Regardless of the presence of indomethacin, location of vessels used for micropuncture, or level of left atrial pressure, pulmonary arterial pressure was the only measured vascular pressure that increased with hypoxia in adult lungs. Thus, in adult lungs, the site of hypoxia-induced vasoconstriction was limited to arteries > 80 microns diam, whereas in newborn lungs the site of hypoxia-induced vasoconstriction included vessels both larger and smaller than 20- to 80-microns-diam arteries. This age-related difference in the sites of hypoxia-induced vasoconstriction was not found in indomethacin-treated lungs.

1992 ◽  
Vol 73 (2) ◽  
pp. 552-556 ◽  
Author(s):  
C. D. Fike ◽  
M. R. Kaplowitz

The purpose of this study was to determine whether pulmonary venous pressure increases during alveolar hypoxia in lungs of newborn pigs. We isolated and perfused with blood the lungs from seven newborn pigs, 6–7 days old. We maintained blood flow constant at 50 ml.min-1.kg-1 and continuously monitored pulmonary arterial and left atrial pressures. Using the micropuncture technique, we measured pressures in 10 to 60-microns-diam venules during inflation with normoxic (21% O2–69–74% N2–5–10% CO2) and hypoxic (90–95% N2–5–10% CO2) gas mixtures. PO2 was 142 +/- 21 Torr during normoxia and 20 +/- 4 Torr during hypoxia. During micropuncture we inflated the lungs to a constant airway pressure of 5 cmH2O and kept left atrial pressure greater than airway pressure (zone 3). During hypoxia, pulmonary arterial pressure increased by 69 +/- 24% and pressure in small venules increased by 40 +/- 23%. These results are similar to those obtained with newborn lambs and ferrets but differ from results with newborn rabbits. The site of hypoxic vasoconstriction in newborn lungs is species dependent.


1988 ◽  
Vol 65 (1) ◽  
pp. 283-287 ◽  
Author(s):  
C. D. Fike ◽  
S. J. Lai-Fook ◽  
R. D. Bland

The purpose of this study was to determine the sites of hypoxic vasoconstriction in lungs of newborn rabbits. We isolated and perfused with blood the lungs from 19 rabbit pups, 7-23 days old. We maintained blood flow constant, continuously monitored pulmonary arterial and left atrial pressures, and alternated ventilation of the lungs with 95% O2-5% CO2 (control), and 95% N2-5% CO2 (hypoxia). Using micropipettes and a servonulling device, we measured pressures in 20-60-micron-diam subpleural arterioles and venules during control and hypoxic conditions. We inflated the lungs to a constant airway pressure of 5-7 cmH2O and kept left atrial pressure greater than airway pressure (zone 3) during micropuncture. In eight lungs we measured microvascular pressures first during control and then during hypoxia. We reversed this order in four lungs. In seven lungs we measured microvascular pressures only during hypoxia. We found a significant increase in pulmonary arterial pressure with no change in microvascular pressures. These results indicate that the site of hypoxic vasoconstriction in lungs of newborn rabbits is arteries greater than 60 micron in diameter.


1991 ◽  
Vol 70 (5) ◽  
pp. 1991-1995 ◽  
Author(s):  
S. A. Gu ◽  
J. Ducas ◽  
U. Schick ◽  
R. M. Prewitt

We investigated the effects of hypoxic ventilation on the pulmonary arterial pressure- (P) flow (Q) relationship in an intact canine preparation. Mean pulmonary P-Q coordinates were obtained during hypoxic ventilation and during ventilation with 100% O2 at normal and at increased left atrial pressure. Specifically, we tested the hypothesis that, over a wide range, changes in left atrial pressure would alter the effects of hypoxic ventilation on pulmonary P-Q characteristics. Seven dogs were studied. When left atrial pressure was normal (5 mmHg), the mean value of the extrapolated intercept (PI) of the linear P-Q relationship was 10.9 mmHg and the slope (incremental vascular resistance, IR) of the P-Q relationship was 2.2 mmHg.l-1.min. Hypoxic ventilation increased PI to 18 mmHg (P less than 0.01) but did not affect IR. Subsequently, during ventilation with 100% O2, when left atrial pressure was increased to 14 mmHg by inflation of left atrial balloon, PI increased to 18 mmHg. IR was 1.6 mmHg.l-1.min. Again, hypoxic ventilation caused an isolated change in PI. Hypoxia increased PI from 18 to 28 mmHg (P less than 0.01). As in the condition of normal left atrial pressure, hypoxic ventilation did not affect IR. We conclude that, in an anesthetized intact canine preparation, hypoxic ventilation causes an isolated increase in the extrapolated pressure intercept of the pulmonary P-Q relationship. Furthermore the effects of hypoxic ventilation on pulmonary P-Q characteristics are not affected by the resting left atrial pressure.


1990 ◽  
Vol 69 (6) ◽  
pp. 2183-2189 ◽  
Author(s):  
J. U. Raj ◽  
R. Hillyard ◽  
P. Kaapa ◽  
M. Gropper ◽  
J. Anderson

We have determined the sites of hypoxic vasoconstriction in ferret lungs. Lungs of five 3- to 5-wk-old and five adult ferrets were isolated and perfused with blood. Blood flow was adjusted initially to keep pulmonary arterial pressure at 20 cmH2O and left atrial and airway pressures at 6 and 8 cmH2O, respectively (zone 3). Once adjusted, flow was kept constant throughout the experiment. In each lung, pressures were measured in subpleural 20- to 50-microns-diam arterioles and venules with the micropipette servo-nulling method during normoxia (PO2 approximately 100 Torr) and hypoxia (PO2 less than 50 Torr). In normoxic adult ferret lungs, approximately 40% of total vascular resistance was in arteries, approximately 40% was in microvessels, and approximately 20% was in veins. With hypoxia, the total arteriovenous pressure drop increased by 68%. Arterial and venous pressure drops increased by 92 and 132%, respectively, with no change in microvascular pressure drop. In 3- to 5-wk-old ferret lungs, the vascular pressure profile during normoxia and the response to hypoxia were similar to those in adult lungs. We conclude that, in ferret lungs, arterial and venous resistances increase equally during hypoxia, resulting in increased microvascular pressures for fluid filtration.


1981 ◽  
Vol 50 (2) ◽  
pp. 341-347 ◽  
Author(s):  
P. T. Schumacker ◽  
J. C. Newell ◽  
T. M. Saba ◽  
S. R. Powers

Pulmonary gas exchange was evaluated in 10 anesthetized mechanically ventilated dogs. Cardiac output (QT) was increased approximately 50% by opening peripheral arteriovenous fistulas. With both lungs ventilated, increasing QT increased mixed venous O2 both pressure (PO2) and pulmonary arterial pressure, but neither shunt fraction nor the distribution of ventilation-perfusion was consistently altered. During left lung atelectasis, increasing QT again increased mixed venous PO2 and pulmonary arterial pressure, but two different responses in shunt-like perfusion were measured. In four dogs, left lung atelectasis caused a shunt fraction of 46 +/- 6% that was not changed by high QT (P greater than 0.05). In six dogs, atelectasis caused a shunt fraction of 24 +/- 3% during normal QT that increased to 42 +/- 2% during high QT (P less than 0.001). Dogs whose shunt fraction during atelectasis was high and unchanged by QT had lower arterial pH (7.24 +/- 0.03) than dogs whose shunt fraction was initially lower and was increased with QT (7.36 +/- 0.02) (P less than 0.01). We conclude that increased QT can worsen shunt flow during lobar atelectasis when hypoxic vasoconstriction has been effective in limiting perfusion to the collapsed region at normal levels of QT.


1964 ◽  
Vol 207 (6) ◽  
pp. 1319-1324 ◽  
Author(s):  
Jiro Nakano ◽  
Christian De Schryver

The effects of arteriovenous fistulas of different magnitudes on cardiovascular dynamics were studied in anesthetized dogs. It was found that A-V fistula decreases mean systemic arterial pressure, effective systemic blood flow, total and pulmonary peripheral resistances, whereas it increases heart rate, total cardiac output, stroke volume, left atrial pressure, pulmonary arterial pressure, and systemic peripheral resistance. The magnitude of the above hemodynamic changes was essentially proportional to the size of the fistula. At equivalent increments in total cardiac output produced by A-V fistula and blood transfusion, the former condition causes a greater increase in pulmonary arterial pressure than the latter, although both conditions decrease the pulmonary peripheral resistance by the same degree. It was also found that, at equivalent left atrial pressures, left ventricular stroke work with A-V fistula was greater than that with blood transfusion.


2016 ◽  
Vol 43 (5) ◽  
pp. 162
Author(s):  
Hasan Basri ◽  
Armijn Firman ◽  
Kusnandi Rusmil ◽  
Eddy Fadlyana

Background The life of patients with thalassemia major dependson blood transfusions, while repeated blood transfusions may causeadverse effects such as iron deposition in various organs, includ-ing heart and lungs, which eventually increases the pulmonaryarterial pressure.Objective This study was proposed to know the occurrence ofpulmonary hypertension in patients with thalassemia major, mea-sured by echocardiography in the Thalassemia Clinic, Departmentof Child Health, Medical School, Padjadjaran University/HasanSadikin Hospital, Bandung.Methods A descriptive cross-sectional study was carried outon 30 patients with thalassemia major, aged 10-14 year-old whoreceived repeated blood transfusions. The study was conductedfrom April to May 2002. Subjects were examined right after ablood transfusion completed and the pulmonary arterial pres-sure was assessed using Doppler–echocardiography and 2-Dechocardiography.Results Twenty two out of 30 subjects showed pulmonary hyper-tension, with pulmonary arterial pressure ranged between 32.3 to46.2 mmHg. According to the age group, pulmonary hypertensionwas found in 12 out of 17 subjects aged 10-12 years old and 10out of 13 subjects aged 13-14 years old.Conclusion The occurrence of pulmonary hypertension in patientswith thalassemia major at Hasan Sadikin Hospital was 22/30 andseemed to increase with the age of the patients


1986 ◽  
Vol 61 (5) ◽  
pp. 1830-1835 ◽  
Author(s):  
W. Mitzner ◽  
J. T. Sylvester

To study the relationship between lung weight and lymph flow, we used an in situ, isolated sheep lung preparation that allowed these two variables to be measured simultaneously. All lungs were perfused for 4.5 h at a constant rate of 100 ml X min-1 X kg-1. In control lungs, the left atrial pressure (Pla) was kept at atmospheric pressure. In experimental lungs, Pla was kept atmospheric except for a 50-min elevation to 18 mmHg midway through the perfusion. During this period of left atrial hypertension, pulmonary arterial pressure rose from 18 to 31 mmHg, lymph flow rose from 3 to 12 ml/h, and the lymph-to-plasma oncotic pressure ratio (pi L/pi P) fell from 0.7 to 0.48. After left atrial pressure was returned to control, pulmonary arterial pressure, lymph flow, and pi L/pi P all returned to control levels. The rate of weight gain after the return of left atrial pressure to control was also the same as that in the control group. However, during the period of left atrial hypertension 135 ml of fluid were filtered into the lung, and this large increase in lung weight remained after the pressure was lowered. The presence of this substantial excess lung water despite control values for vascular pressures, lymph flow, rate of weight gain, and pi L/pi P suggests that the absolute amount of lung water has little influence on the dynamic aspects of lung fluid balance. These results are consistent with a two-compartment model of the interstitial space, where only one of the compartments is readily drained by the lymphatics.


Sign in / Sign up

Export Citation Format

Share Document