Respiratory and cardiovascular responses to increased and decreased carotid sinus pressure in sleeping dogs

1995 ◽  
Vol 78 (5) ◽  
pp. 1688-1698 ◽  
Author(s):  
K. W. Saupe ◽  
C. A. Smith ◽  
K. S. Henderson ◽  
J. A. Dempsey

The purpose of this study was to determine the effects of changing blood pressure in the carotid sinus (Pcs) on ventilatory output during wakefulness and non-rapid-eye-movement sleep in unanesthetized dogs. Eight dogs were chronically instrumented so that ventilation, heart rate, and blood pressure could be measured while pressure in the isolated carotid sinus was rapidly changed by means of an extracorporeal perfusion circuit. Raising Pcs 35–75 mmHg consistently reduced ventilation 15–40% in a dose-response fashion, with little or no further diminution in minute ventilation as Pcs was further increased > 75 mmHg above control level. This decrease in minute ventilation was immediate, due primarily to a decrease in tidal volume, and was sustained over the 20-s period of elevated Pcs. Increases in Pcs also caused immediate sustained reductions in systemic blood pressure and heart rate, both of which also fell in a dose-dependent fashion. The ventilatory and systemic cardiovascular responses to increased Pcs were the same during wakefulness and non-rapid-eye-movement sleep. Decreasing Pcs 40–80 mmHg caused a sudden carotid chemoreceptor-mediated hyperpnea that was eliminated by hyperoxia. We conclude that increasing Pcs causes a reflex inhibition of ventilation and that this reflex may play a role in sleep-disordered breathing.

1998 ◽  
Vol 85 (4) ◽  
pp. 1285-1291 ◽  
Author(s):  
Sandrine H. Launois ◽  
Joseph H. Abraham ◽  
J. Woodrow Weiss ◽  
Debra A. Kirby

Patients with obstructive sleep apnea experience marked cardiovascular changes with apnea termination. Based on this observation, we hypothesized that sudden sleep disruption is accompanied by a specific, patterned hemodynamic response, similar to the cardiovascular defense reaction. To test this hypothesis, we recorded mean arterial blood pressure, heart rate, iliac blood flow and vascular resistance, and renal blood flow and vascular resistance in five pigs instrumented with chronic sleep electrodes. Cardiovascular parameters were recorded during quiet wakefulness, during non-rapid-eye-movement and rapid-eye-movement sleep, and during spontaneous and induced arousals. Iliac vasodilation (iliac vascular resistance decreased by −29.6 ± 4.1% of baseline) associated with renal vasoconstriction (renal vascular resistance increased by 10.3 ± 4.0%), tachycardia (heart rate increase: +23.8 ± 3.1%), and minimal changes in mean arterial blood pressure were the most common pattern of arousal response, but other hemodynamic patterns were observed. Similar findings were obtained in rapid-eye-movement sleep and for acoustic and tactile arousals. In conclusion, spontaneous and induced arousals from sleep may be associated with simultaneous visceral vasoconstriction and hindlimb vasodilation, but the response is variable.


1998 ◽  
Vol 84 (1) ◽  
pp. 269-276 ◽  
Author(s):  
Christine R. Wilson ◽  
Shalini Manchanda ◽  
David Crabtree ◽  
James B. Skatrud ◽  
Jerome A. Dempsey

Wilson, Christine R., Shalini Manchanda, David Crabtree, James B. Skatrud, and Jerome A. Dempsey. An induced blood pressure rise does not alter upper airway resistance in sleeping humans. J. Appl. Physiol. 84(1): 269–276, 1998.—Sleep apnea is associated with episodic increases in systemic blood pressure. We investigated whether transient increases in arterial pressure altered upper airway resistance and/or breathing pattern in nine sleeping humans (snorers and nonsnorers). A pressure-tipped catheter was placed below the base of the tongue, and flow was measured from a nose or face mask. During non-rapid-eye-movement sleep, we injected 40- to 200-μg iv boluses of phenylephrine. Parasympathetic blockade was used if bradycardia was excessive. Mean arterial pressure (MAP) rose by 20 ± 5 (mean ± SD) mmHg (range 12–37 mmHg) within 12 s and remained elevated for 105 s. There were no significant changes in inspiratory or expiratory pharyngeal resistance (measured at peak flow, peak pressure, 0.2 l/s or by evaluating the dynamic pressure-flow relationship). At peak MAP, end-tidal CO2 pressure fell by 1.5 Torr and remained low for 20–25 s. At 26 s after peak MAP, tidal volume fell by 19%, consistent with hypocapnic ventilatory inhibition. We conclude that transient increases in MAP of a magnitude commonly observed during non-rapid-eye-movement sleep-disordered breathing do not increase upper airway resistance and, therefore, will not perpetuate subsequent obstructive events.


1998 ◽  
Vol 274 (4) ◽  
pp. R1136-R1141 ◽  
Author(s):  
Richard L. Verrier ◽  
T. Rern Lau ◽  
Umesha Wallooppillai ◽  
James Quattrochi ◽  
Bruce D. Nearing ◽  
...  

Rapid eye movement (REM) sleep results in profound state-dependent alterations in heart rate. The present study describes a novel phenomenon of a primary deceleration in heart rate that is not preceded or followed by increases in heart rate or arterial blood pressure and occurs primarily during tonic REM sleep. The goals were to characterize the primary decelerations and to provide insights on the underlying central and peripheral autonomic mechanisms. Cats were chronically implanted with electrodes to record electroencephalogram, pontogeniculooccipital wave activity in lateral geniculate nucleus, hippocampal theta rhythm, electromyogram, electrooculogram, respiration (diaphragm), and electrocardiogram. Arterial blood pressure was monitored from a carotid artery catheter. R-R interval fluctuations were continuously tracked using customized software. The muscarinic blocking agent glycopyrrolate (0.1 mg/kg iv) and the β-adrenergic blocking agent atenolol (0.3 mg/kg iv) were administered in alternating sequence with a 90- to 120-min interval. Glycopyrrolate immediately eliminated the decelerations during REM sleep. Atenolol alone had no effect on their frequency. These findings suggest that a change in the centrally induced pattern of autonomic activity to the heart is responsible for the primary decelerations, namely, a bursting of cardiac vagal efferent fiber activity.


2010 ◽  
Vol 109 (4) ◽  
pp. 1053-1063 ◽  
Author(s):  
H. Schwimmer ◽  
H. M. Stauss ◽  
F. Abboud ◽  
S. Nishino ◽  
E. Mignot ◽  
...  

Sleep influences the cardiovascular, endocrine, and thermoregulatory systems. Each of these systems may be affected by the activity of hypocretin (orexin)-producing neurons, which are involved in the etiology of narcolepsy. We examined sleep in male rats, either hypocretin neuron-ablated orexin/ataxin-3 transgenic (narcoleptic) rats or their wild-type littermates. We simultaneously monitored electroencephalographic and electromyographic activity, core body temperature, tail temperature, blood pressure, electrocardiographic activity, and locomotion. We analyzed the daily patterns of these variables, parsing sleep and circadian components and changes between states of sleep. We also analyzed the baroreceptor reflex. Our results show that while core temperature and heart rate are affected by both sleep and time of day, blood pressure is mostly affected by sleep. As expected, we found that both blood pressure and heart rate were acutely affected by sleep state transitions in both genotypes. Interestingly, hypocretin neuron-ablated rats have significantly lower systolic and diastolic blood pressure during all sleep stages (non-rapid eye movement, rapid eye movement) and while awake (quiet, active). Thus, while hypocretins are critical for the normal temporal structure of sleep and wakefulness, they also appear to be important in regulating baseline blood pressure and possibly in modulating the effects of sleep on blood pressure.


2001 ◽  
Vol 280 (5) ◽  
pp. H2336-H2341 ◽  
Author(s):  
Fumihiko Yasuma ◽  
Jun-Ichiro Hayano

Respiratory sinus arrhythmia (RSA) may serve to enhance pulmonary gas exchange efficiency by matching pulmonary blood flow with lung volume within each respiratory cycle. We examined the hypothesis that RSA is augmented as an active physiological response to hypercapnia. We measured electrocardiograms and arterial blood pressure during progressive hypercapnia in conscious dogs that were prepared with a permanent tracheostomy and an implanted blood pressure telemetry unit. The intensity of RSA was assessed continuously as the amplitude of respiratory fluctuation of heart rate using complex demodulation. In a total of 39 runs of hypercapnia in 3 dogs, RSA increased by 38 and 43% of the control level when minute ventilation reached 10 and 15 l/min, respectively ( P < 0.0001 for both), and heart rate and mean arterial pressure showed no significant change. The increases in RSA were significant even after adjustment for the effects of increased tidal volume, respiratory rate, and respiratory fluctuation of arterial blood pressure ( P < 0.001). These observations indicate that increased RSA during hypercapnia is not the consequence of altered autonomic balance or respiratory patterns and support the hypothesis that RSA is augmented as an active physiological response to hypercapnia.


1994 ◽  
Vol 266 (1) ◽  
pp. R151-R157 ◽  
Author(s):  
L. Kapas ◽  
M. Shibata ◽  
M. Kimura ◽  
J. M. Krueger

The effects of N omega-nitro-L-arginine methyl ester (L-NAME), an inhibitor of nitric oxide synthesis, on spontaneous and interleukin-1 (IL-1)-induced sleep were examined in rabbits. Animals were injected intracerebroventricularly or intravenously during the light phase with vehicle, L-NAME, IL-1, or the combination of L-NAME and IL-1. Injection of L-NAME (5 mg icv and 100 mg/kg iv) suppressed both non-rapid eye movement sleep (NREMS) and rapid eye movement sleep (REMS) for 4-6 h. The sleep-suppressive effects are unlikely due to pressor responses to L-NAME because administration of L-NAME (5 mg icv) produced only a transient (3-4 min) slight increase in systemic blood pressure. Injection of IL-1 (20 ng icv) elicited fever, suppressed REMS, and increased NREMS for 6 h. NREMS was suppressed for 3 h after the combined intracerebroventricular injections of 5 mg L-NAME and 20 ng IL-1 and was elevated during postinjection hours 4-6. Administration of IL-1 (30 ng/kg iv) increased NREMS and brain temperature for 2 h. After the combined injection of IL-1 and L-NAME (100 mg/kg), NREMS was significantly suppressed during postinjection hours 1-5. It is not known whether the interactions between the sleep-suppressive effects of L-NAME and the NREMS-promoting effects of IL-1 are specific, being mediated via a common mechanism, or whether they are additive, being mediated via independent mechanisms. The pyrogenic and REMS-suppressive actions of either intracerebroventricularly or intravenously injected IL-1 were not affected by L-NAME.(ABSTRACT TRUNCATED AT 250 WORDS)


1991 ◽  
Vol 71 (4) ◽  
pp. 1201-1215 ◽  
Author(s):  
J. B. Neilly ◽  
E. A. Gaipa ◽  
G. Maislin ◽  
A. I. Pack

Because successive rapid-eye-movement (REM) sleep periods in the night are longer in duration and have more phasic events, ventilation during late REM sleep might be more affected than in earlier episodes. Despite the increase in eye movement density (EMD) in late REM sleep, average minute ventilation was, however, not reduced compared with that in early REM sleep. Decreases in rib cage motion (mean inspiratory flow of the rib cage) in association with increasing EMD were offset by increments in respiratory frequency. Apart from expiratory time, there were no significant changes in the slopes of the relationships between EMD and specific ventilatory components, from early to late REM sleep periods. However, there was an increase in the number of episodes when ventilation was reduced during late REM sleep. Changes in ventilatory pattern during late REM sleep are due to changes in the underlying nature of REM sleep. The ventilatory response during eye movements is, however, subject specific. Some subjects exhibit large decrements in mean inspiratory flow of the rib cage and increments in respiratory frequency during bursts of eye movement, whereas other individuals demonstrate only small changes in these ventilatory parameters.


1963 ◽  
Vol 205 (2) ◽  
pp. 360-364 ◽  
Author(s):  
Francis L. Abel ◽  
John H. Pierce ◽  
Warren G. Guntheroth

The effects of 30° head-down and head-up tilting on mean systemic blood pressure, carotid blood flow, and heart rate were studied in 16 dogs under morphine and Nembutal anesthesia. The tilting procedure was further repeated after denervation of the carotid sinus and aortic arch baroreceptors and after administration of a dihydrogenated ergot alkaloid mixture (Hydergine). The results indicate that the drop in pressure in the head-down position is primarily due to baroreceptor activity and that the baroreceptors are necessary for compensatory vasoconstriction on head-up tilting. Carotid blood flow decreased in both tilted positions in the control animals; the possible relationship to cerebral blood flow is discussed.


1985 ◽  
Vol 59 (2) ◽  
pp. 384-391 ◽  
Author(s):  
D. P. White ◽  
J. V. Weil ◽  
C. W. Zwillich

Recent investigation suggests that both ventilation (VE) and the chemical sensitivity of the respiratory control system correlate closely with measures of metabolic rate [O2 consumption (VO2) and CO2 production (VCO2)]. However, these associations have not been carefully investigated during sleep, and what little information is available suggests a deterioration of the relationships. As a result we measured VE, ventilatory pattern, VO2, and VCO2 during sleep in 21 normal subjects (11 males and 10 females) between the ages of 21 and 77 yr. When compared with values for awake subjects, expired ventilation decreased 8.2 +/- 2.3% (SE) during sleep and was associated with a 8.5 +/- 1.6% decrement in VO2 and a 12.3 +/- 1.7% reduction in VCO2, all P less than 0.01. The decrease in ventilation was a product primarily of a significant decrease in tidal volume with little change in frequency. None of these findings were dependent on sleep stage with results in rapid-eye-movement (REM) and non-rapid-eye-movement sleep being similar. Through all sleep stages ventilation remained tightly correlated with VO2 and VCO2 both within a given individual and between subjects. Although respiratory rhythmicity was somewhat variable during REM sleep, minute ventilation continued to correlate with VO2 and VCO2. None of the parameters described above were influenced by age or gender, with male and female subjects demonstrating similar findings. Ten of the subjects demonstrated at least occasional apneas. These individuals, however, were not found to differ from those without apnea in any other measure of ventilation or metabolic rate.


2003 ◽  
Vol 94 (3) ◽  
pp. 883-890 ◽  
Author(s):  
Michael F. Fitzpatrick ◽  
Helen S. Driver ◽  
Neela Chatha ◽  
Nha Voduc ◽  
Alison M. Girard

The oral and nasal contributions to inhaled ventilation were simultaneously quantified during sleep in 10 healthy subjects (5 men, 5 women) aged 43 ± 5 yr, with normal nasal resistance (mean 2.0 ± 0.3 cmH2O · l−1 · s−1) by use of a divided oral and nasal mask. Minute ventilation awake (5.9 ± 0.3 l/min) was higher than that during sleep (5.2 ± 0.3 l/min; P < 0.0001), but there was no significant difference in minute ventilation between different sleep stages ( P = 0.44): stage 2 5.3 ± 0.3, slow-wave 5.2 ± 0.2, and rapid-eye-movement sleep 5.2 ± 0.2 l/min. The oral fraction of inhaled ventilation during wakefulness (7.6 ± 4%) was not significantly different from that during sleep (4.3 ± 2%; mean difference 3.3%, 95% confidence interval −2.1–8.8%, P = 0.19), and no significant difference ( P = 0.14) in oral fraction was observed between different sleep stages: stage two 5.1 ± 2.8, slow-wave 4.2 ± 1.8, rapid-eye-movement 3.1 ± 1.7%. Thus the inhaled oral fraction in normal subjects is small and does not change significantly with sleep stage.


Sign in / Sign up

Export Citation Format

Share Document