Contribution of vasomotion to vascular resistance: a comparison of arteries from virgin and pregnant rats

1998 ◽  
Vol 85 (6) ◽  
pp. 2255-2260 ◽  
Author(s):  
Robert J. Gratton ◽  
Robin E. Gandley ◽  
John F. McCarthy ◽  
Walter K. Michaluk ◽  
Bryan K. Slinker ◽  
...  

Intrinsic oscillatory activity, or vasomotion, within the microcirculation has many potential functions, including modulation of vascular resistance. Alterations in oscillatory activity during pregnancy may contribute to the marked reduction in vascular resistance. The purpose of this study was 1) to mathematically model the oscillatory changes in vessel diameter and determine the effect on vascular resistance and 2) to characterize the vasomotion in resistance arteries of pregnant and nonpregnant (virgin) rats. Mesenteric arteries were isolated from Sprague-Dawley rats and studied in a pressurized arteriograph. Mathematical modeling demonstrated that the resistance in a vessel with vasomotion was greater than that in a static vessel with the same mean radius. During constriction with the α1-adrenergic agonist phenylephrine, the amplitude of oscillation was less in the arteries from pregnant rats. We conclude that vasomotor activity may provide a mechanism to regulate vascular resistance and blood flow independent of static changes in arterial diameter. During pregnancy the decrease in vasomotor activity in resistance arteries may contribute to the reduction in peripheral vascular resistance.

2002 ◽  
Vol 282 (1) ◽  
pp. H30-H37 ◽  
Author(s):  
Rayna J. Gonzales ◽  
Benjimen R. Walker

Chronic hypoxia (CH) is associated with a persistent reduction in systemic vasoconstrictor reactivity. Experiments on aortic ring segments isolated from CH rats suggest that enhanced vascular expression of heme oxygenase (HO) and resultant production of the vasodilator carbon monoxide (CO) may underlie this attenuated vasoreactivity after hypoxia. Similar to the aorta, small arteries from CH rats exhibit blunted reactivity; however, the regulatory role of CO in the resistance vasculature has not been established. Therefore, we examined the significance of HO activity on responsiveness to phenylephrine (PE) in the mesenteric circulation of control and CH rats. To document that the mesenteric bed demonstrates reduced reactivity after CH, we determined the vasoconstrictor responses of conscious, chronically instrumented male Sprague-Dawley rats to PE under control conditions and then immediately after exposure to 48 h CH (0.5 atm). All rats showed reduced mesenteric vasoconstriction to PE after CH. To examine the role of CO in reduced reactivity, small mesenteric arteries (100–200 μm intraluminal diameter) from control and 48-h CH rats were isolated and mounted on glass cannulas, pressurized to 60 mmHg and superfused with increasing concentrations of PE under normoxic conditions. Similar to the intact circulation, vessels from CH rats exhibited reduced vasoconstrictor sensitivity to PE compared with controls that persisted in the presence of nitric oxide synthase inhibition. The HO inhibitor, zinc protoporphyrin IX (5 μM) enhanced reactivity only in CH vessels. Additionally, a range of concentrations of the HO substrate heme-l-lysinate caused vasodilation in CH vessels but not in controls. Thus we conclude that CO contributes a significant vasodilator influence in resistance vessels after CH that may account for diminished vasoconstrictor responsiveness under these conditions.


2005 ◽  
Vol 288 (4) ◽  
pp. H1521-H1525 ◽  
Author(s):  
Anna G. Euser ◽  
Marilyn J. Cipolla

This study compared the vasodilatory responses to magnesium sulfate (MgSO4) of cerebral and mesenteric resistance arteries and determined whether the responses varied between different gestational groups. Third-order branches (<200 μm) of the posterior cerebral (PCA) and mesenteric arteries (MA) were dissected from nonpregnant (NP; n = 6), late pregnant (LP; day 19, n = 6), and postpartum (PP; day 3, n = 6) Sprague-Dawley rats. A concentration-response curve was performed by replacing the low-MgSO4 (1.2 mM) HEPES buffer solution with increasing concentrations of MgSO4 (4, 6, 8, 16, and 32 mM) and measuring lumen diameter at each concentration. All groups exhibited concentration-dependent dilation to MgSO4, decreasing the amount of tone in the vessels. However, MA were significantly more sensitive to MgSO4 than PCA. Whereas there was no difference in the response between different gestational groups in MA, the PCA from the LP and PP groups showed a significantly diminished response to MgSO4. The percent dilation at 32 mM MgSO4 for PCA versus MA in NP, LP, and PP animals was 36 ± 2 vs. 51 ± 7% ( P < 0.05), 19 ± 9 vs. 54 ± 6% ( P < 0.01 vs. PCA and NP), and 12 ± 5 vs. 52 ± 11% ( P < 0.01 vs. PCA and NP). These results demonstrate that MgSO4 is a vasodilator of small resistance arteries in the cerebral and mesenteric vascular beds. The refractory responses of the PCA in LP and PP groups demonstrate changes in the cerebrovascular vasodilatory mechanisms with gestation. The greater sensitivity of the MA to MgSO4-induced vasodilation suggests that the prophylactic effect of MgSO4 on eclamptic seizures may be more closely related to the lowering of systemic blood pressure than to an effect on cerebral blood flow.


1993 ◽  
Vol 264 (1) ◽  
pp. H78-H85 ◽  
Author(s):  
G. D'Angelo ◽  
G. Osol

Whole animal pressor responses are blunted during pregnancy; yet, uterine arteries, paradoxically, become significantly more sensitive to the constrictor effects of phenylephrine (PE). The objectives herein were to investigate 1) the regional variation (uterine vs. mesenteric arteries) in dose-lumen diameter relationship to alpha-adrenergic stimulation during pregnancy, and 2) the selectivity of these sensitivity shifts for this pathway (PE vs. KCl). Lumen diameter was measured in isolated, pressurized (50 mmHg) arterial segments from age-matched virgin (nonpregnant; NP) and late pregnant (LP; days 19-20) Sprague-Dawley rats. Uterine arcuate vs. mesenteric arteries from NP rats were equally sensitive to either vasoconstrictor. Arcuate arteries from LP rats, however, were 4.5-fold more sensitive to PE (P < 0.01) compared with those from NP controls. Furthermore, diameter curves became superimposed at [PE] > or = 0.1 microM, even though initial diameter of arcuate arteries from LP rats was significantly larger (P < 0.001). Conversely, mesenteric arteries from LP rats were three-fold less sensitive to PE (P < 0.02), and the diameter curve displayed a corresponding parallel rightward shift. Pregnancy did not affect the sensitivity to KCl depolarization in either arcuate or mesenteric arteries. The percent reduction in lumen diameter to the maximum [KCl] was significantly decreased only in arcuate arteries from LP rats (P < 0.001). Thus, during pregnancy, divergent constrictor responses specific to alpha-adrenergic stimulation occur in resistance arteries from the uterine vs. splanchnic circulations. Consequently, concentrations of PE that are subthreshold in NP uterine arteries can elicit large changes in lumen diameter and thereby have a pronounced effect on uterine vascular resistance in the pregnant state.


Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Nancy L Kanagy ◽  
Jessica M Osmond ◽  
Olan Jackson-Weaver ◽  
Benjimen R Walker

Hydrogen sulfide (H 2 S), produced by the enzyme cystathionine-γ lyase (CSE), dilates arteries by hyperpolarizing and relaxing vascular smooth muscle cells (VSMC) and CSE knock-out causes hypertension and endothelial dysfunction showing the importance of this system. However, it is not clear if H 2 S-induced VSMC depolarization and relaxation is mediated by direct effects on VSMC or indirectly through actions on endothelial cells (EC). We reported previously that disrupting EC prevents H 2 S-induced vasodilation suggesting H 2 S might act directly on EC. Because inhibiting large-conductance Ca 2+ -activated K + (BK Ca ) channels also inhibits H 2 S-induced dilation, we hypothesized that H 2 S activates EC BK Ca channels to hyperpolarize EC and increase EC Ca 2+ which stimulates release of a secondary hyperpolarizing factor. Small mesenteric arteries from male Sprague-Dawley rats were used for all experiments. We found that EC disruption prevented H 2 S-induced VSMC membrane potential ( E m ) hyperpolarization. Blocking EC BK Ca channels with luminal application of the BK Ca inhibitor, iberiotoxin (IbTx, 100 nM), also prevented NaHS-induced dilation and VSMC hyperpolarization but did not affect resting VSMC E m showing EC specific actions. Sharp electrode recordings in arteries cut open to expose EC demonstrated H 2 S-induced hyperpolarization of EC while Ca 2+ imaging studies in fluor-4 loaded EC showed that H 2 S increases EC Ca 2+ event frequency. Thus H 2 S can act directly on EC. Inhibiting the EC enzyme cytochrome P 450 2C (Cyp2C) with sulfaphenazole also prevented VSMC depolarization and vasodilation. Finally, inhibiting TRPV4 channels to block the target of the Cyp2C product 11,12-EET inhibited NaHS-induced dilation. Combined with our previous report that CSE inhibition decreases BK Ca currents in EC, these results suggest that H 2 S stimulates EC BK Ca channels and activates Cyp2C upstream of VSMC hyperpolarization and vasodilation.


2003 ◽  
Vol 284 (5) ◽  
pp. H1737-H1743 ◽  
Author(s):  
Alyson P. McKee ◽  
Dee A. Van Riper ◽  
Cathy A. Davison ◽  
Harold A. Singer

The purpose of this study was to test the hypothesis that pathways modulating vasoconstriction in rat mesenteric resistance arteries are gender dependent. Net contractile responses to phenylephrine were significantly increased by endothelium disruption in arteries from males but not females. This gender-dependent effect was stimulus specific, because disruption of endothelium increased reactivity to serotonin comparably in arteries from both genders. Ovariectomy unmasked an increase in net α1-adrenergic contractile responsiveness after endothelium disruption, suggesting α1-adrenergic-stimulated production of endothelial vasodilators is suppressed in control females by gonadal sex steroids. Production of modulatory endothelium-derived vasodilators in males is balanced by production of vasoconstricting arachidonic acid metabolites. This was revealed by decreased α1-adrenergic contractile responses in arteries from males after pretreatment with indomethacin or the cyclooxygenase-1 selective inhibitor SC-560. The indomethacin-induced effect persisted after endothelium disruption, indicating smooth muscle as the source of cyclooxygenase-1-derived vasoconstrictors and was attenuated after orchiectomy. This study indicates gender differences in the expression of two pathways modulating α1-adrenergic sensitivity in mesenteric arteries: an endothelium-dependent vasodilator pathway and a balancing smooth muscle cyclooxygenase-1-dependent vasoconstrictor pathway. One consequence of these differences is that endothelial damage produces a selective increase in α1-adrenergic agonist reactivity in arteries from males.


2006 ◽  
Vol 100 (4) ◽  
pp. 1117-1123 ◽  
Author(s):  
Shane A. Phillips ◽  
E. B. Olson ◽  
Julian H. Lombard ◽  
Barbara J. Morgan

Although arterial dilator reactivity is severely impaired during exposure of animals to chronic intermittent hypoxia (CIH), few studies have characterized vasoconstrictor responsiveness in resistance arteries of this model of sleep-disordered breathing. Sprague-Dawley rats were exposed to CIH (10% inspired O2 fraction for 1 min at 4-min intervals; 12 h/day) for 14 days. Control rats were housed under normoxic conditions. Diameters of isolated gracilis muscle resistance arteries (GA; 120–150 μm) were measured by television microscopy before and during exposure to norepinephrine (NE) and angiotensin II (ANG II) and at various intraluminal pressures between 20 and 140 mmHg in normal and Ca2+-free physiological salt solution. There was no difference in the ability of GA to constrict in response to ANG II ( P = 0.42; not significant; 10−10–10−7 M). However, resting tone, myogenic activation, and vasoconstrictor responses to NE ( P < 0.001; 10−9–10−6 M) were reduced in CIH vs. controls. Treatment of rats with the superoxide scavenger 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (tempol; 1 mM) in the drinking water restored myogenic responses and NE-induced constrictions of CIH rats, suggesting that elevated superoxide production during exposure to CIH attenuates vasoconstrictor responsiveness to NE and myogenic activation in skeletal muscle resistance arteries. CIH also leads to an increased stiffness and reduced vessel wall distensibility that were not correctable with oral tempol treatment.


2000 ◽  
Vol 279 (2) ◽  
pp. F353-F357 ◽  
Author(s):  
Ali A. Khraibi

The objective of this study was to test the hypothesis that a decrease in renal interstitial hydrostatic pressure (RIHP) accounts for the blunted pressure natriuresis during pregnancy. RIHP was measured in nonpregnant (NP; n = 9), midterm pregnant (MP; 12–14 days after conception; n = 10), and late-term pregnant (LP; 18–21 days after conception; n = 12) female Sprague-Dawley rats at two renal perfusion pressure (RPP) levels (99 and 120 mmHg). At the lower RPP level, RIHP was 5.9 ± 0.3 mmHg for NP, 3.4 ± 0.4 mmHg for MP ( P < 0.05 vs. NP), and 2.9 ± 0.1 mmHg for LP ( P < 0.05 vs. NP) rats. The increase in RPP from 99 to 120 mmHg resulted in pressure natriuretic and diuretic responses in all groups; however, the increases in fractional excretion of sodium (ΔFENa), urine flow rate (ΔV), and ΔRIHP were significantly greater ( P < 0.05) in NP compared with both MP and LP rats. ΔFENa, ΔV, and ΔRIHP were 2.06 ± 0.28%, 81.44 ± 14.10 μl/min, and 3.0 ± 0.5 mmHg for NP; 0.67 ± 0.13%, 28.03 ± 5.28 μl/min, and 0.5 ± 0.2 mmHg for MP; and 0.48 ± 0.12%, 18.14 ± 4.70 μl/min, and 0.4 ± 0.1 mmHg for LP rats. In conclusion, RIHP is significantly lower in pregnant compared with nonpregnant rats at similar RPP levels. Also, the ability of pregnant rats to increase RIHP in response to an increase in RPP is blunted. These changes in RIHP may play an important role in the blunted pressure natriuresis and contribute to the conservation of sodium and water that is critical for fetal growth and development during normal pregnancy.


1995 ◽  
Vol 268 (3) ◽  
pp. F416-F422 ◽  
Author(s):  
S. Omer ◽  
S. Mulay ◽  
P. Cernacek ◽  
D. R. Varma

The influence of pregnancy on renal responses to atrial natriuretic factor (ANF) was determined in urethane-anesthetized Sprague-Dawley rats. Infusions of ANF caused a significantly greater increase in urinary excretion of fluid, sodium, and potassium in virgin than in pregnant (13-15 days and 21 days) rats. Guanosine 3',5'-cyclic monophosphate (cGMP) excretion, mean arterial pressure, plasma immunoreactive ANF, and glomerular filtration rate (GFR) following ANF infusions were not different in virgin and gravid rats, although increments in GFR over basal were greater in virgin than in gravid animals. Renal responses to ANF normalized during postpartum and were attenuated by progesterone treatment of virgin rats. Natriuretic effects of infusions of ANF plus ANF-(4-23) (a ligand for clearance receptors) or of ANF plus thiorphan (an endopeptidase inhibitor) in virgin and pregnant rats did not differ; ANF-(4--23) and thiorphan alone caused greater natriuresis in pregnant than in virgin rats. Effects of ANF on cGMP production by collecting duct cells isolated from virgin and pregnant rats did not differ. We concluded that the attenuation in the renal effects of ANF during pregnancy might be mediated by progesterone by an increase in the intrarenal metabolism of ANF and might reflect physiological adjustment to facilitate fluid/electrolyte expansion.


1995 ◽  
Vol 269 (5) ◽  
pp. R1179-R1182 ◽  
Author(s):  
R. L. Simrose ◽  
J. E. Fewell

Rats have an attenuated or absent febrile response to exogenous pyrogen (e.g., bacterial endotoxin) near term of pregnancy. With the aim of providing insight into possible mechanism(s) of the altered febrile response to exogenous pyrogen, experiments have been carried out on 67 time-bred Sprague-Dawley rats to investigate the febrile response to endogenous pyrogen [i.e., interleukin-1 beta (IL-1 beta)]. On day 13 of gestation, intravenous injection of IL-1 beta produced a significant increase in body temperature with a latency of approximately 30 min and a duration of approximately 120 min. In contrast, on days 17 and 21 of gestation as well as on the day of delivery, intravenous injection of IL-1 beta produced significant decreases in body temperature. Thus rats do not develop fever in response to endogenous pyrogen near term of pregnancy but rather become hypothermic. The mechanism of the altered body temperature response to exogenous pyrogen as pregnancy proceeds remains unknown. We speculate, however, that it most likely lies downstream from the formation of endogenous pyrogen.


2001 ◽  
Vol 280 (3) ◽  
pp. H1215-H1221 ◽  
Author(s):  
Kei Miyakoshi ◽  
Hitoshi Ishimoto ◽  
Osamu Nishimura ◽  
Shinji Tanigaki ◽  
Mamoru Tanaka ◽  
...  

We investigated leukocyte involvement in uterine hypoperfusion and intrauterine fetal growth retardation (IUGR) induced by ischemia-reperfusion (I/R) in Sprague-Dawley rats. On day 17 of gestation, leukocyte accumulation in the uterus and placenta subjected to 30 min of ischemia, followed by reperfusion, was assessed by measuring myeloperoxidase (MPO) activity. Uterine MPO activity was significantly higher after 1 h of reperfusion than it was before ischemia ( P < 0.05), without any increase in placental MPO activity. Immunohistochemical staining showed leukocyte accumulation in the uterus subjected to I/R. The effects of treatment with monoclonal antibodies against CD11a (WT1) and CD18 (WT3) at a dose of 0.8 mg/kg on uterine blood flow and IUGR were investigated. Laser-Doppler flowmetry demonstrated that uterine hypoperfusion at 2 h after ischemia (blood flow, −51.7 ± 1.2%; P < 0.01) was inhibited by WT1 and WT3 treatment. I/R-induced IUGR at full term ( P < 0.05 vs. nonischemic horn) was prevented by WT1 and WT3 treatment on day 17. These results indicate that leukocyte accumulation may play an important role in the pathogenesis of uterine hypoperfusion and IUGR induced by I/R in pregnant rats.


Sign in / Sign up

Export Citation Format

Share Document