Comparison of short-term diet and exercise on insulin action in individuals with abnormal glucose tolerance

1999 ◽  
Vol 86 (6) ◽  
pp. 1930-1935 ◽  
Author(s):  
Paul J. Arciero ◽  
Matthew D. Vukovich ◽  
John O. Holloszy ◽  
Susan B. Racette ◽  
Wendy M. Kohrt

The effects of a 10-day low-calorie diet (LCD; n = 8) or exercise training (ET; n = 8) on insulin secretion and action were compared in obese men ( n = 9) and women ( n = 7), aged 53 ± 1 yr, with abnormal glucose tolerance by using a hyperglycemic clamp with superimposed arginine infusion and a high-fat drink. Body mass (LCD, 115 ± 5 vs. 110 ± 5 kg; ET, 111 ± 7 vs. 109 ± 7 kg; P < 0.01) and fasting plasma glucose (LCD, 115 ± 10 vs. 99 ± 4 mg/dl; ET, 112 ± 4 vs. 101 ± 5 mg/dl, P < 0.01) and insulin (LCD, 23.9 ± 5.6 vs. 15.2 ± 3.9 μU/ml; ET, 17.6 ± 1.9 vs. 13.9 ± 2.4 μU/ml; P < 0.05) decreased in both groups. There was a 40% reduction in plasma insulin during hyperglycemia (0–45 min) after LCD (peak: 118 ± 18 vs. 71 ± 14 μU/ml; P < 0.05) and ET (69 ± 14 vs. 41 ± 7 μU/ml; P < 0.05) and trends for reductions during arginine infusion and a high-fat drink. The 56% increase in glucose uptake after ET (4.95 ± 0.90 vs. 7.74 ± 0.82 mg ⋅ min−1 ⋅ kg fat-free mass−1; P < 0.01) was significantly ( P < 0.01) greater than the 19% increase (5.72 ± 1.12 vs. 6.80 ± 0.94 mg ⋅ min−1 ⋅ kg fat-free mass−1; P = not significant) that occurred after LCD. The marked increase in glucose disposal after ET, despite lower insulin levels, suggests that short-term exercise is more effective than diet in enhancing insulin action in individuals with abnormal glucose tolerance.

1999 ◽  
Vol 276 (1) ◽  
pp. E85-E93 ◽  
Author(s):  
Mark J. Holness ◽  
Mary C. Sugden

The study investigated whether a persistent impairment of insulin secretion resulting from mild protein restriction predisposes to loss of glucoregulatory control and impaired insulin action after the subsequent imposition of the diabetogenic challenge of high-fat feeding. Offspring of dams provided with either control (20% protein) diet (C) or an isocaloric restricted (8%) protein diet (PR) were weaned onto the maintenance diet with which their mothers had been provided. At 20 wk of age, protein restriction enhanced glucose tolerance despite impaired insulin secretion and an augmented and sensitized lipolytic response to norepinephrine in adipocytes. C and PR rats were then transferred to a high-fat diet (HF, 19% protein, 22% lipid, 34% carbohydrate) and sampled after 8 wk. These groups are termed C-HF and PR-HF. Glucose tolerance was impaired in PR-HF, but not C-HF, rats. Insulin-stimulated glucose disposal rates were significantly lower (by 30%; P < 0.01) in the PR-HF group than in the C-HF group, and a specific impairment of antilipolytic response of insulin was unmasked in adipocytes from PR-HF, but not C-HF, rats. The study demonstrates that antecedent protein restriction accelerates and augments the development of impaired glucoregulation and insulin resistance after high-fat feeding.


1996 ◽  
Vol 270 (5) ◽  
pp. E890-E894 ◽  
Author(s):  
G. Paolisso ◽  
A. Gambardella ◽  
S. Ammendola ◽  
A. D'Amore ◽  
V. Balbi ◽  
...  

Advancing age has been found to be associated with a decline in insulin action. Nevertheless, no study has been conducted in healthy centenarians. Our study investigates glucose tolerance and insulin action in centenarians. Fifty-two subjects were enrolled. The subjects were divided in three groups as follows: 1) adults (< 50 yr; n = 20);2) aged subjects (> 75 yr; n = 22); and 3) centenarians (> 100 yr; n = 14). Body composition was studied by bioimpedance analysis. In all subjects, an oral glucose tolerance test and euglycemic glucose clamp were performed. Centenarians have a lower fat-free mass (FFM) than aged subjects and adults, whereas fasting plasma glucose, triglycerides, free fatty acids, urea, and creatinine were not different in the groups studies. Centenarians had a 2-h plasma glucose concentration (6.0 +/- 0.2 mmol/l) that was lower than that in aged subjects (6.6 +/- 0.5 mmol/l, P < 0.05) but not different from adults [6.4 +/- 0.4 mmol/l, P = not significant (NS)]. During the clamp, plasma glucose and insulin concentrations were similar in the three groups. In these conditions, centenarians had a whole body glucose disposal (34.1 +/- 0.6 mumol.kg FFM-1.min 1) that was greater than that in aged subjects (23.3 +/- 0.5 mumol.kg FFM-1.min-1 P < 0.01) but not different from adults (34.6 +/- 0.5 mumol/kg x min, P = NS). In conclusion, our study demonstrates that centenarians compared with aged subjects had a preserved glucose tolerance and insulin action.


1987 ◽  
Vol 63 (6) ◽  
pp. 2247-2252 ◽  
Author(s):  
D. S. King ◽  
G. P. Dalsky ◽  
M. A. Staten ◽  
W. E. Clutter ◽  
D. R. Van Houten ◽  
...  

To evaluate insulin sensitivity and responsiveness, a two-stage hyperinsulinemic euglycemic clamp procedure (insulin infusions of 40 and 400 mU.m-2.min-1) was performed on 11 endurance-trained and 11 untrained volunteers. A 3-h hyperglycemic clamp procedure (plasma glucose approximately 180 mg/dl) was used to study the insulin response to a fixed glycemic stimulus in 15 trained and 12 untrained subjects. During the 40-mU.m-2.min-1 insulin infusion, the glucose disposal rate was 10.2 +/- 0.5 mg.kg fat-free mass (FFM)-1.min-1 in the trained group compared with 8.0 +/- 0.6 mg.kg FFM-1.min-1 in the untrained group (P less than 0.01). In contrast, there was no significant difference in maximally stimulated glucose disposal: 17.7 +/- 0.6 in the trained vs. 16.7 +/- 0.7 mg.kg FFM-1.min-1 in the untrained group. During the hyperglycemic clamp procedure, the incremental area for plasma insulin was lower in the trained subjects for both early (0–10 min: 140 +/- 18 vs. 223 +/- 23 microU.ml–1.min; P less than 0.005) and late (10–180 min: 4,582 +/- 689 vs. 8,895 +/- 1,316 microU.ml–1.min; P less than 0.005) insulin secretory phases. These data demonstrate that 1) the improved insulin action in healthy trained subjects is due to increased sensitivity to insulin, with no change in responsiveness to insulin, and 2) trained subjects have a smaller plasma insulin response to an identical glucose stimulus than untrained individuals.


2001 ◽  
Vol 280 (1) ◽  
pp. E130-E142 ◽  
Author(s):  
Ben B. Yaspelkis ◽  
James R. Davis ◽  
Maziyar Saberi ◽  
Toby L. Smith ◽  
Reza Jazayeri ◽  
...  

In addition to suppressing appetite, leptin may also modulate insulin secretion and action. Leptin was administered here to insulin-resistant rats to determine its effects on secretagogue-stimulated insulin release, whole body glucose disposal, and insulin-stimulated skeletal muscle glucose uptake and transport. Male Wistar rats were fed either a normal (Con) or a high-fat (HF) diet for 3 or 6 mo. HF rats were then treated with either vehicle (HF), leptin (HF-Lep, 10 mg · kg−1 · day−1 sc), or food restriction (HF-FR) for 12–15 days. Glucose tolerance and skeletal muscle glucose uptake and transport were significantly impaired in HF compared with Con. Whole body glucose tolerance and rates of insulin-stimulated skeletal muscle glucose uptake and transport in HF-Lep were similar to those of Con and greater than those of HF and HF-FR. The insulin secretory response to either glucose or tolbutamide (a pancreatic β-cell secretagogue) was not significantly diminished in HF-Lep. Total and plasma membrane skeletal muscle GLUT-4 protein concentrations were similar in Con and HF-Lep and greater than those in HF and HF-FR. The findings suggest that chronic leptin administration reversed a high-fat diet-induced insulin-resistant state, without compromising insulin secretion.


Diabetes ◽  
2004 ◽  
Vol 53 (8) ◽  
pp. 1949-1952 ◽  
Author(s):  
A. M. van den Hoek ◽  
A. C. Heijboer ◽  
E. P.M. Corssmit ◽  
P. J. Voshol ◽  
J. A. Romijn ◽  
...  

Plants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1348
Author(s):  
Prawej Ansari ◽  
Peter R. Flatt ◽  
Patrick Harriott ◽  
Yasser H.A. Abdel-Wahab

Annona squamosa is generally referred to as a ‘custard apple’. Antidiabetic actions of hot water extract of Annona squamosa (HWAS) leaves together with isolation of active insulinotropic compounds were studied. Insulin release, membrane potential and intracellular Ca2+ were determined using BRIN-BD11 cells and isolated mouse islets. 3T3L1 adipocytes and in vitro models were used to determine cellular glucose uptake, insulin action, starch digestion, glucose diffusion, DPP-IV activity and glycation. Glucose intolerant high-fat fed rats were used for in vivo studies. Active compounds were isolated and characterized by HPLC, LCMS and NMR. HWAS stimulated insulin release from clonal β-cells and mouse islets. Using fluorescent indicator dyes and modulators of insulin secretion, effects could be attributed to depolarization of β-cells and influx of Ca2+. Secretion was stimulated by isobutylmethylxanthine (IBMX), tolbutamide or 30 mM KCl, indicating additional non-KATP dependent pathways. Extract stimulated cellular glucose uptake and insulin action and inhibited starch digestion, protein glycation, DPP-IV enzyme activity and glucose diffusion. Oral HWAS improved glucose tolerance and plasma insulin in high-fat fed obese rats. Treatment for 9 days with HWAS (250 mg/5 mL/kg), partially normalised energy intake, body weight, pancreatic insulin content, and both islet size and beta cell mass. This was associated with improved oral glucose tolerance, increased plasma insulin and inhibition of plasma DPP-IV activity. Isolated insulinotropic compounds, including rutin (C27H30O16), recapitulated the positive actions of HWAS on beta cells and in vivo glucose tolerance and plasma insulin responses. Annona squamosa is attractive as a dietary adjunct in treatment of T2DM and as a source of potential antidiabetic agents including rutin.


Diabetes ◽  
2009 ◽  
Vol 58 (12) ◽  
pp. 2910-2919 ◽  
Author(s):  
Patricia O. Prada ◽  
Eduardo R. Ropelle ◽  
Rosa H. Mourão ◽  
Claudio T. de Souza ◽  
Jose R. Pauli ◽  
...  

2017 ◽  
Vol 233 (3) ◽  
pp. 269-279 ◽  
Author(s):  
Greg M Kowalski ◽  
Michael J Kraakman ◽  
Shaun A Mason ◽  
Andrew J Murphy ◽  
Clinton R Bruce

The high-fat, high-sucrose diet (HFSD)–fed C57Bl/6 mouse is a widely used model of prediabetes. However, studies typically implement a relatively short dietary intervention lasting between 4 and 16 weeks; as a result, little is known about how a long-term HFSD influences the metabolic profile of these mice. Therefore, the aim of this investigation was to examine the effects of consuming a HFSD for 42 weeks on the development of hyperinsulinaemia and glucose intolerance in male C57Bl/6 mice. Two cohorts of HFSD mice were studied at independent institutes and they underwent an oral glucose tolerance test (OGTT) with measures of plasma insulin and free fatty acids (FFA). Age-matched chow-fed control mice were also studied. The HFSD-fed mice were hyperinsulinaemic and grossly obese, being over 25 g heavier than chow-fed mice, which was due to a marked expansion of subcutaneous adipose tissue. This was associated with a 3-fold increase in liver lipid content. Glucose tolerance, however, was either the same or better than control mice due to the preservation of glucose disposal as revealed by a dynamic stable isotope-labelled OGTT. In addition, plasma FFAs were suppressed to lower levels in HFSD mice during the OGTT. In conclusion, we have made the paradoxical observation that long-term HFSD feeding results in the resolution of glucose intolerance in the C57Bl/6 mouse. Mechanistically, we propose that the gross expansion of subcutaneous adipose tissue increases the glucose disposal capacity of the HFSD-fed mouse, which overcomes the prevailing insulin resistance to improve glucose tolerance.


Sign in / Sign up

Export Citation Format

Share Document