Single-unit recordings of arterial chemoreceptors from mouse petrosal ganglia in vitro

2000 ◽  
Vol 88 (4) ◽  
pp. 1489-1495 ◽  
Author(s):  
David F. Donnelly ◽  
Ricardo Rigual

A preparation was developed that allows for the recording of single-unit chemoreceptor activity from mouse carotid body in vitro. An anesthetized mouse was decapitated, and each carotid body was harvested, along with the sinus nerve, glossopharyngeal nerve, and petrosal ganglia. After exposure to collagenase/trypsin, the cleaned complex was transferred to a recording chamber where it was superfused with oxygenated saline. The ganglia was searched for evoked or spontaneous unit activity by using a glass suction electrode. Single-unit action potentials were 57 ± 10 (SE) ( n = 16) standard deviations above the recording noise, and spontaneous spikes were generated as a random process. Decreasing superfusate[Formula: see text] to near 20 Torr caused an increase in spiking activity from 1.3 ± 0.4 to 14.1 ± 1.9 Hz ( n = 16). The use of mice for chemoreceptor studies may be advantageous because targeted gene deletions are well developed in the mouse model and may be useful in addressing unresolved questions regarding the mechanism of chemotransduction.

2015 ◽  
Vol 43 (3) ◽  
pp. 474-485 ◽  
Author(s):  
Akhil Srinivasan ◽  
John Tipton ◽  
Mayank Tahilramani ◽  
Adel Kharbouch ◽  
Eric Gaupp ◽  
...  

Neuroscience ◽  
2018 ◽  
Vol 379 ◽  
pp. 1-12 ◽  
Author(s):  
Li-Yuan Chen ◽  
Maxime Lévesque ◽  
Mauro Cataldi ◽  
Massimo Avoli

2020 ◽  
Vol 315 ◽  
pp. 128111 ◽  
Author(s):  
Tiantian Guo ◽  
Longtu Chen ◽  
Khanh Tran ◽  
Pejman Ghelich ◽  
Yi-Syuan Guo ◽  
...  

2012 ◽  
Vol 302 (7) ◽  
pp. G740-G747 ◽  
Author(s):  
Galya R. Abdrakhmanova ◽  
Minho Kang ◽  
M. Imad Damaj ◽  
Hamid I. Akbarali

Recently, we reported that nicotine in vitro at a low 1-μM concentration suppresses hyperexcitability of colonic dorsal root ganglia (DRG; L1-L2) neurons in the dextran sodium sulfate (DSS)-induced mouse model of acute colonic inflammation ( 1 ). Here we show that multiple action potential firing in colonic DRG neurons persisted at least for 3 wk post-DSS administration while the inflammatory signs were diminished. Similar to that in DSS-induced acute colitis, bath-applied nicotine (1 μM) gradually reduced regenerative multiple-spike action potentials in colonic DRG neurons to a single action potential in 3 wk post-DSS neurons. Nicotine (1 μM) shifted the activation curve for tetrodotoxin (TTX)-resistant sodium currents in inflamed colonic DRG neurons (voltage of half-activation changed from −37 to −32 mV) but did not affect TTX-sensitive currents in control colonic DRG neurons. Further, subcutaneous nicotine administration (2 mg/kg b.i.d.) in DSS-treated C57Bl/J6 male mice resulted in suppression of hyperexcitability of colonic DRG (L1-L2) neurons and the number of abdominal constrictions in response to intraperitoneal injection of 0.6% acetic acid. Collectively, the data suggest that neuronal nicotinic acetylcholine receptor-mediated suppression of hyperexcitability of colonic DRG neurons attenuates reduction of visceral hypersensitivity in DSS mouse model of colonic inflammation.


2003 ◽  
Vol 284 (6) ◽  
pp. R1551-R1559 ◽  
Author(s):  
Steven C. Hempleman ◽  
Thomas P. Adamson ◽  
Rowin S. Begay ◽  
Irene C. Solomon

Avian intrapulmonary chemoreceptors (IPC) are vagal respiratory afferents that are inhibited by high lung Pco 2 and excited by low lung Pco 2. Previous work suggests that increased CO2 inhibits IPC by acidifying intracellular pH (pHi) and that pHi is determined by a kinetic balance between the rate of intracellular carbonic anhydrase-catalyzed CO2 hydration/dehydration and transmembrane extrusion of acids and/or bases by various exchangers. Here, the role of amiloride-sensitive Na+/H+ exchange (NHE) in the IPC CO2 response was tested by recording single-unit action potentials from IPC in anesthetized ducks, Anas platyrhynchos. For each of the IPC tested, blockade of the NHE using dimethyl amiloride (DMA) elicited a marked (>50%) dose-dependent decrease in mean IPC discharge ( P < 0.05), suggesting that NHE is important for pHi regulation and CO2 transduction in IPC. In addition, activation of the NHE using 12-O-tetradecanoylphorbol 13-acetate stimulated six of the seven IPC tested, although the overall effect was not statistically significantly ( P = 0.07). Taken together, these findings suggest that CO2 transduction in IPC is dependent on transmembrane NHE although it is likely to be much slower than carbonic anhydrase-catalyzed hydration-dehydration of CO2.


1982 ◽  
Vol 242 (1) ◽  
pp. R77-R84 ◽  
Author(s):  
S. R. Kelso ◽  
M. N. Perlmutter ◽  
J. A. Boulant

Single-unit activity was recorded in vitro from tissue slices of rat preoptic area-anterior hypothalamus. The thermosensitivity of 139 units was determined by their changes in firing rate in response to changes in slice temperature. Of these neurons, 30% were warm sensitive, 10% were cold sensitive, and 60% were temperature insensitive. These proportions are similar to results obtained in whole-animal studies, indicating that this is a viable preparation. It also suggests that hypothalamic neuronal thermosensitivity is not dependent on peripheral afferent input. All units had low firing rates (less than 10 imp/s) at 37 degrees C, and 83% of the warm-sensitive units were most thermosensitive above 37 degrees C. This supports the concept that afferent input determines the level of firing rate and range of thermosensitivity of warm-sensitive neurons. The cold-sensitive units also displayed maximal thermosensitivity above 37 degrees C, which would be expected if cold-sensitive neurons received inhibitory synaptic input from nearby warm-sensitive neurons.


Sign in / Sign up

Export Citation Format

Share Document