Dietary carbohydrate, muscle glycogen content, and endurance performance in well-trained women

2000 ◽  
Vol 88 (6) ◽  
pp. 2151-2158 ◽  
Author(s):  
J. Lynne Walker ◽  
George J. F. Heigenhauser ◽  
Eric Hultman ◽  
Lawrence L. Spriet

This study examined the ability of well-trained eumenorrheic women to increase muscle glycogen content and endurance performance in response to a high-carbohydrate diet (HCD; ∼78% carbohydrate) compared with a moderate-carbohydrate diet (MD; ∼48% carbohydrate) when tested during the luteal phase of the menstrual cycle. Six women cycled to exhaustion at ∼80% maximal oxygen uptake (V˙o 2 max) after each of the randomly assigned diet and exercise-tapering regimens. A biopsy was taken from the vastus lateralis before and after exercise in each trial. Preexercise muscle glycogen content was high after the MD (625.2 ± 50.1 mmol/kg dry muscle) and 13% greater after the HCD (709.0 ± 44.8 mmol/kg dry muscle). Postexercise muscle glycogen was low after both trials (MD, 91.4 ± 34.5; HCD, 80.3 ± 19.5 mmol/kg dry muscle), and net glycogen utilization during exercise was greater after the HCD. The subjects also cycled longer at ∼80%V˙o 2 max after the HCD vs. MD (115:31 ± 10:47 vs. 106:35 ± 8:36 min:s, respectively). In conclusion, aerobically trained women increased muscle glycogen content in response to a high-dietary carbohydrate intake during the luteal phase of the menstrual cycle, but the magnitude was smaller than previously observed in men. The increase in muscle glycogen, and possibly liver glycogen, after the HCD was associated with increased cycling performance to volitional exhaustion at ∼80%V˙o 2 max.


2002 ◽  
Vol 282 (3) ◽  
pp. E688-E694 ◽  
Author(s):  
T. J. Stephens ◽  
Z.-P. Chen ◽  
B. J. Canny ◽  
B. J. Michell ◽  
B. E. Kemp ◽  
...  

The effect of prolonged moderate-intensity exercise on human skeletal muscle AMP-activated protein kinase (AMPK)α1 and -α2 activity and acetyl-CoA carboxylase (ACCβ) and neuronal nitric oxide synthase (nNOSμ) phosphorylation was investigated. Seven active healthy individuals cycled for 30 min at a workload requiring 62.8 ± 1.3% of peak O2consumption (V˙o 2 peak) with muscle biopsies obtained from the vastus lateralis at rest and at 5 and 30 min of exercise. AMPKα1 activity was not altered by exercise; however, AMPKα2 activity was significantly ( P < 0.05) elevated after 5 min (∼2-fold), and further elevated ( P < 0.05) after 30 min (∼3-fold) of exercise. ACCβ phosphorylation was increased ( P < 0.05) after 5 min (∼18-fold compared with rest) and increased ( P< 0.05) further after 30 min of exercise (∼36-fold compared with rest). Increases in AMPKα2 activity were significantly correlated with both increases in ACCβ phosphorylation and reductions in muscle glycogen content. Fat oxidation tended ( P = 0.058) to increase progressively during exercise. Muscle creatine phosphate was lower ( P < 0.05), and muscle creatine, calculated free AMP, and free AMP-to-ATP ratio were higher ( P < 0.05) at both 5 and 30 min of exercise compared with those at rest. At 30 min of exercise, the values of these metabolites were not significantly different from those at 5 min of exercise. Phosphorylation of nNOSμ was variable, and despite the mean doubling with exercise, statistically significance was not achieved ( P = 0.304). Western blots indicated that AMPKα2 was associated with both nNOSμ and ACCβ consistent with them both being substrates of AMPKα2 in vivo. In conclusion, AMPKα2 activity and ACCβ phosphorylation increase progressively during moderate exercise at ∼60% of V˙o 2 peak in humans, with these responses more closely coupled to muscle glycogen content than muscle AMP/ATP ratio.



2003 ◽  
Vol 94 (5) ◽  
pp. 1917-1925 ◽  
Author(s):  
D. C. Nieman ◽  
J. M. Davis ◽  
D. A. Henson ◽  
J. Walberg-Rankin ◽  
M. Shute ◽  
...  

Sixteen experienced marathoners ran on treadmills for 3 h at ∼70% maximal oxygen consumption (V˙o 2 max) on two occasions while receiving 1 l/h carbohydrate (CHO) or placebo (Pla) beverages. Blood and vastus lateralis muscle biopsy samples were collected before and after exercise. Plasma was analyzed for IL-6, IL-10, IL-1 receptor agonist (IL-1ra), IL-8, cortisol, glucose, and insulin. Muscle was analyzed for glycogen content and relative gene expression of 13 cytokines by using real-time quantitative RT-PCR. Plasma glucose and insulin were higher, and cortisol, IL-6, IL-10, and IL-1ra, but not IL-8, were significantly lower postexercise in CHO vs. Pla. Change in muscle glycogen content did not differ between CHO and Pla ( P = 0.246). Muscle cytokine mRNA content was detected preexercise for seven cytokines in this order (highest to lowest): IL-15, TNF-α, IL-8, IL-1β, IL-12p35, IL-6, and IFN-γ. After subjects ran for 3 h, gene expression above prerun levels was measured for five of these cytokines: IL-1β, IL-6, and IL-8 (large increases), and IL-10 and TNF-α (small increases). The increase in mRNA (fold difference from preexercise) was attenuated in CHO (15.9-fold) compared with Pla (35.2-fold) for IL-6 ( P = 0.071) and IL-8 (CHO, 7.8-fold; Pla, 23.3-fold; P = 0.063). CHO compared with Pla beverage ingestion attenuates the increase in plasma IL-6, IL-10, and IL-1ra and gene expression for IL-6 and IL-8 in athletes running 3 h at 70%V˙o 2 max despite no differences in muscle glycogen content.



2005 ◽  
Vol 99 (3) ◽  
pp. 950-956 ◽  
Author(s):  
Andrew Creer ◽  
Philip Gallagher ◽  
Dustin Slivka ◽  
Bozena Jemiolo ◽  
William Fink ◽  
...  

Two pathways that have been implicated for cellular growth and development in response to muscle contraction are the extracellular signal-regulated kinase (ERK1/2) and Akt signaling pathways. Although these pathways are readily stimulated after exercise, little is known about how nutritional status may affect stimulation of these pathways in response to resistance exercise in human skeletal muscle. To investigate this, experienced cyclists performed 30 repetitions of knee extension exercise at 70% of one repetition maximum after a low (2%) or high (77%) carbohydrate (LCHO or HCHO) diet, which resulted in low or high (∼174 or ∼591 mmol/kg dry wt) preexercise muscle glycogen content. Muscle biopsies were taken from the vastus lateralis before, ∼20 s after, and 10 min after exercise. ERK1/2 and p90 ribosomal S6 kinase phosphorylation increased ( P ≤ 0.05) 10 min after exercise, regardless of muscle glycogen availability. Akt phosphorylation was elevated ( P < 0.05) 10 min after exercise in the HCHO trial but was unaffected after exercise in the LCHO trial. Mammalian target of rapamycin phosphorylation was similar to that of Akt during each trial; however, change or lack of change was not significant. In conclusion, the ERK1/2 pathway appears to be unaffected by muscle glycogen content. However, muscle glycogen availability appears to contribute to regulation of the Akt pathway, which may influence cellular growth and adaptation in response to resistance exercise in a low-glycogen state.



1991 ◽  
Vol 70 (4) ◽  
pp. 1500-1505 ◽  
Author(s):  
J. C. Simonsen ◽  
W. M. Sherman ◽  
D. R. Lamb ◽  
A. R. Dernbach ◽  
J. A. Doyle ◽  
...  

The belief that high-carbohydrate diets enhance training capacity (mean power output) has been extrapolated from studies that have varied dietary carbohydrate over a few days and measured muscle glycogen but did not assess power output during training. We hypothesized that a high-carbohydrate (HI) diet (10 g.kg body mass-1.day-1) would promote greater muscle glycogen content and greater mean power output during training than a moderate-carbohydrate (MOD) diet (5 g.kg body mass-1.day-1) over 4 wk of intense twice-daily rowing training. Dietary protein intake was 2 g.kg body mass-1.day-1, and fat intake was adjusted to maintain body mass. Twelve male and 10 female collegiate rowers were randomly assigned to the treatment groups. Training was 40 min at 70% peak O2 consumption (VO2) (A.M.) and either three 2,500-m time trials to assess power output or interval training at 70-90% peak VO2 (P.M.). Mean daily training was 65 min at 70% peak VO2 and 38 min at greater than or equal to 90% peak VO2. Mean muscle glycogen content increased 65% in the HI group (P less than 0.05) but remained constant at 119 mmol/kg in the MOD group over the 4 wk. Mean power output in time trials increased 10.7 and 1.6% after 4 wk in the HI and MOD groups, respectively (P less than 0.05). We conclude that a diet with 10 g carbohydrate.kg body mass-1.day-1 promotes greater muscle glycogen content and greater power output during training than a diet containing 5 g carbohydrate.kg body mass-1.day-1 over 4 wk of intense twice-daily rowing training.(ABSTRACT TRUNCATED AT 250 WORDS)





1993 ◽  
Vol 75 (2) ◽  
pp. 1019-1023 ◽  
Author(s):  
L. M. Burke ◽  
G. R. Collier ◽  
M. Hargreaves

The effect of the glycemic index (GI) of postexercise carbohydrate intake on muscle glycogen storage was investigated. Five well-trained cyclists undertook an exercise trial to deplete muscle glycogen (2 h at 75% of maximal O2 uptake followed by four 30-s sprints) on two occasions, 1 wk apart. For 24 h after each trial, subjects rested and consumed a diet composed exclusively of high-carbohydrate foods, with one trial providing foods with a high GI (HI GI) and the other providing foods with a low GI (LO GI). Total carbohydrate intake over the 24 h was 10 g/kg of body mass, evenly distributed between meals eaten 0, 4, 8, and 21 h postexercise. Blood samples were drawn before exercise, immediately after exercise, immediately before each meal, and 30, 60, and 90 min post-prandially. Muscle biopsies were taken from the vastus lateralis immediately after exercise and after 24 h. When the effects of the immediate postexercise meal were excluded, the totals of the incremental glucose and insulin areas after each meal were greater (P < or = 0.05) for the HI GI meals than for the LO GI meals. The increase in muscle glycogen content after 24 h of recovery was greater (P = 0.02) with the HI GI diet (106 +/- 11.7 mmol/kg wet wt) than with the LO GI diet (71.5 +/- 6.5 mmol/kg). The results suggest that the most rapid increase in muscle glycogen content during the first 24 h of recovery is achieved by consuming foods with a high GI.



1994 ◽  
Vol 77 (3) ◽  
pp. 1565-1568 ◽  
Author(s):  
G. McConell ◽  
M. McCoy ◽  
J. Proietto ◽  
M. Hargreaves

The present study examined the relationship between total skeletal muscle GLUT-4 protein level and glucose uptake during exercise. Eight active non-endurance-trained men cycled at 72 +/- 1% peak pulmonary oxygen consumption for 40 min, with rates of glucose appearance and disappearance (Rd) determined by utilizing a primed continuous infusion of [3–3H]glucose commencing 2 h before exercise. Muscle glycogen content and utilization, citrate synthase activity, and total GLUT-4 protein were measured on muscle biopsy samples obtained from the vastus lateralis. A direct relationship existed between preexercise muscle glycogen content and glycogen utilization during exercise (r = 0.76, P < 0.05). Citrate synthase activity and glucose Rd at the end of exercise averaged 21.9 +/- 3.0 mumol.min-1.g-1 and 27.3 +/- 2.5 mumol.kg-1.min-1, respectively. There was a direct correlation between citrate synthase activity and GLUT-4 protein (r = 0.78, P < 0.05); however, at the end of exercise, glucose Rd was inversely related to both GLUT-4 (r = -0.89, P < 0.01) and citrate synthase activity (r = -0.72, P < 0.05). Plasma insulin, which decreased during exercise, was not related to glucose Rd. In conclusion, glucose uptake during 40 min of exercise at 72% peak pulmonary oxygen consumption was inversely related to the total muscle GLUT-4 protein level. This suggests that factors other than the total GLUT-4 protein level are important in the regulation of glucose uptake during exercise.



2020 ◽  
Vol 52 (7S) ◽  
pp. 80-81
Author(s):  
Grant A. Chesbro ◽  
Brian A. Pribble ◽  
Ashley N. Fox ◽  
Daniel J. Larson ◽  
Christopher D. Black ◽  
...  


1996 ◽  
Vol 7 (1) ◽  
pp. 52-54 ◽  
Author(s):  
P. Mariani ◽  
K. Lundström ◽  
U. Gustafsson ◽  
A. -C. Enfält ◽  
R. K. Juneja ◽  
...  


Author(s):  
B. Essén ◽  
B. Pernow ◽  
P. D. Gollnick ◽  
B. Saltin


Sign in / Sign up

Export Citation Format

Share Document